384 research outputs found

    Fully broadband vAPP coronagraphs enabling polarimetric high contrast imaging

    Full text link
    We present designs for fully achromatic vector Apodizing Phase Plate (vAPP) coronagraphs, that implement low polarization leakage solutions and achromatic beam-splitting, enabling observations in broadband filters. The vAPP is a pupil plane optic, inducing the phase through the inherently achromatic geometric phase. We discuss various implementations of the broadband vAPP and set requirements on all the components of the broadband vAPP coronagraph to ensure that the leakage terms do not limit a raw contrast of 1E-5. Furthermore, we discuss superachromatic QWPs based of liquid crystals or quartz/MgF2 combinations, and several polarizer choices. As the implementation of the (broadband) vAPP coronagraph is fully based on polarization techniques, it can easily be extended to furnish polarimetry by adding another QWP before the coronagraph optic, which further enhances the contrast between the star and a polarized companion in reflected light. We outline several polarimetric vAPP system designs that could be easily implemented in existing instruments, e.g. SPHERE and SCExAO.Comment: 11 pages, 5 figures, presented at SPIE Astronomical Telescopes and Instrumentation 201

    Experimental Analysis of Proton-Induced Displacement and Ionization Damage Using Gate-Controlled Lateral PNP Bipolar Transistors

    Get PDF
    The electrical characteristics of proton-irradiated bipolar transistors are affected by ionization damage to the insulating oxide and displacement damage to the semiconductor bulk. While both types of damage degrade the transistor, it is important to understand the mechanisms individually and to be able to analyze them separately. In this paper, a method for analyzing the effects of ionization and displacement damage using gate-controlled lateral PNP bipolar junction transistors is described. This technique allows the effects of oxide charge, surface recombination velocity, and bulk traps to be measured independently

    Once-weekly semaglutide for patients with type 2 diabetes:a cost-effectiveness analysis in the Netherlands

    Get PDF
    Objective Choosing therapies for type 2 diabetes that are both effective and cost-effective is vital as healthcare systems worldwide aim to maximize health of the population. The present analysis assessed the cost-effectiveness of once-weekly semaglutide (a novel glucagon-like peptide-1 (GLP-1) receptor agonist) versus insulin glargine U100 (the most commonly used basal insulin) and versus dulaglutide (an alternative once-weekly GLP-1 receptor agonist), from a societal perspective in the Netherlands. Research design and methods The IQVIA CORE Diabetes Model was used to project outcomes for once-weekly semaglutide 0.5 mg and 1 mg versus insulin glargine U100, once-weekly semaglutide 0.5 mg versus dulaglutide 0.75 mg, and once-weekly semaglutide 1 mg versus dulaglutide 1.5 mg. Clinical data were taken from the SUSTAIN 4 and SUSTAIN 7 clinical trials. The analysis captured direct and indirect costs, mortality, and the impact of diabetes-related complications on quality of life. Results Projections of outcomes suggested that once-weekly semaglutide 0.5 mg was associated with improved quality-adjusted life expectancy by 0.19 quality-adjusted life years (QALYs) versus insulin glargine U100 and 0.07 QALYs versus dulaglutide 0.75 mg. Once-weekly semaglutide 1 mg was associated with mean increases in quality-adjusted life expectancy of 0.27 QALYs versus insulin glargine U100 and 0.13 QALYs versus dulaglutide 1.5 mg. Improvements came at an increased cost versus insulin glargine U100, with incremental cost-effectiveness ratios from a societal perspective of _4988 and _495 per QALY gained for once-weekly semaglutide 0.5 mg and 1 mg, respectively, falling below Netherlands-specific willingness-to-pay thresholds. Improvements versus dulaglutide came at a reduced cost from a societal perspective for both doses of once-weekly semaglutide. Conclusions Once-weekly semaglutide is cost-effective versus insulin glargine U100, and dominant versus dulaglutide 0.75 and 1.5 mg for the treatment of type 2 diabetes, and represents a good use of healthcare resources in the Netherlands

    Localization of the SFT inspired Nonlocal Linear Models and Exact Solutions

    Full text link
    A general class of gravitational models driven by a nonlocal scalar field with a linear or quadratic potential is considered. We study the action with an arbitrary analytic function F(â–ˇ)F(\Box), which has both simple and double roots. The way of localization of nonlocal Einstein equations is generalized on models with linear potentials. Exact solutions in the Friedmann-Robertson-Walker and Bianchi I metrics are presented.Comment: 20 pages, 3 figures, published in the proceedings of the VIII International Workshop "Supersymmetries and Quantum Symmetries" (SQS'09), Dubna, Russia, July 29 - August 3, 2009, http://theor.jinr.ru/~sqs09

    Quantum back-reaction of the superpartners in a large-N supersymmetric hybrid model

    Full text link
    We study the supersymmetric hybrid model near and after the end of inflation. As usual, we reduce the model to a purely scalar hybrid model on the level of the classical fields. But on the level of quantum fluctuations and their backreaction we take into account all superpartners of the waterfall field in a large-N approximation. The evolution after slow roll displays two phases with a different characteristic behaviour of the classical and fluctuation fields. We find that the fluctuations of the pseudoscalar superpartner are of particular importance in the late time phase. The motion of the waterfall field towards its classical expectation value is found to be very slow and suggests a rather flat potential and a stochastic force.Comment: 37 pages 19 figure

    Analysis of scalar perturbations in cosmological models with a non-local scalar field

    Get PDF
    We develop the cosmological perturbations formalism in models with a single non-local scalar field originating from the string field theory description of the rolling tachyon dynamics. We construct the equation for the energy density perturbations of the non-local scalar field in the presence of the arbitrary potential and formulate the local system of equations for perturbations in the linearized model when both simple and double roots of the characteristic equation are present. We carry out the general analysis related to the curvature and entropy perturbations and consider the most specific example of perturbations when important quantities in the model become complex.Comment: LaTeX, 25 pages, 1 figure, v2: Subsection 3.2 and Section 5 added, references added, accepted for publication in Class. Quant. Grav. arXiv admin note: text overlap with arXiv:0903.517

    Towards an Observational Appraisal of String Cosmology

    Full text link
    We review the current observational status of string cosmology when confronted with experimental datasets. We begin by defining common observational parameters and discuss how they are determined for a given model. Then we review the observable footprints of several string theoretic models, discussing the significance of various potential signals. Throughout we comment on present and future prospects of finding evidence for string theory in cosmology, and on significant issues for the future.Comment: Review accepted for publication in the CQG focus issue on string cosmology. Minor clarifications and references adde

    Brane inflation and the WMAP data: a Bayesian analysis

    Get PDF
    The Wilkinson Microwave Anisotropy Probe (WMAP) constraints on string inspired ''brane inflation'' are investigated. Here, the inflaton field is interpreted as the distance between two branes placed in a flux-enriched background geometry and has a Dirac-Born-Infeld (DBI) kinetic term. Our method relies on an exact numerical integration of the inflationary power spectra coupled to a Markov-Chain Monte-Carlo exploration of the parameter space. This analysis is valid for any perturbative value of the string coupling constant and of the string length, and includes a phenomenological modelling of the reheating era to describe the post-inflationary evolution. It is found that the data favour a scenario where inflation stops by violation of the slow-roll conditions well before brane annihilation, rather than by tachyonic instability. Concerning the background geometry, it is established that log(v) > -10 at 95% confidence level (CL), where "v" is the dimensionless ratio of the five-dimensional sub-manifold at the base of the six-dimensional warped conifold geometry to the volume of the unit five-sphere. The reheating energy scale remains poorly constrained, Treh > 20 GeV at 95% CL, for an extreme equation of state (wreh ~ -1/3) only. Assuming the string length is known, the favoured values of the string coupling and of the Ramond-Ramond total background charge appear to be correlated. Finally, the stochastic regime (without and with volume effects) is studied using a perturbative treatment of the Langevin equation. The validity of such an approximate scheme is discussed and shown to be too limited for a full characterisation of the quantum effects.Comment: 65 pages, 15 figures, uses iopart. Shortened version, updated references. Matches publication up to appendix B kept on the arXi

    Cosmology of the Tachyon in Brane Inflation

    Full text link
    In certain implementations of the brane inflationary paradigm, the exit from inflation occurs when the branes annihilate through tachyon condensation. We investigate various cosmological effects produced by this tachyonic era. We find that only a very small region of the parameter space (corresponding to slow-roll with tiny inflaton mass) allows for the tachyon to contribute some e-folds to inflation. In addition, non-adiabatic density perturbations are generated at the end of inflation. When the brane is moving relativistically this contribution can be of the same order as fluctuations produced 55 e-folds before the end of inflation. The additional contribution is very nearly scale-invariant and enhances the tensor/scalar ratio. Additional non-gaussianities will also be generated, sharpening current constraints on DBI-type models which already predict a significantly non-gaussian signal.Comment: 30 pages, 2 figures; v3, minor revision, JCAP versio
    • …
    corecore