18,781 research outputs found

    Nonmonotonic Trust Management for P2P Applications

    Get PDF
    Community decisions about access control in virtual communities are non-monotonic in nature. This means that they cannot be expressed in current, monotonic trust management languages such as the family of Role Based Trust Management languages (RT). To solve this problem we propose RT-, which adds a restricted form of negation to the standard RT language, thus admitting a controlled form of non-monotonicity. The semantics of RT- is discussed and presented in terms of the well-founded semantics for Logic Programs. Finally we discuss how chain discovery can be accomplished for RT-.Comment: This paper appears in the proceedings of the 1st International Workshop on Security and Trust Management (STM 2005). To appear in ENTC

    A VLT/FORS2 Multi-Slit Search for Lyman-alpha Emitting Galaxies at z~6.5

    Full text link
    We present results from a deep spectroscopic search in the 9150A atmospheric window for z~6.5 Lyman-alpha emitting galaxies using the VLT/FORS2. Our multi-slit+narrow-band filter survey covers a total spatial area of 17.6 sq. arcmin in four different fields and reaches fluxes down to 5x10^(-18) erg/s/cm^2 (7 sigma detection). Our detection limit is significantly fainter than narrow-band searches at this redshift and fainter also than the unlensed brightness of Hu et al.'s HCM6A at z=6.56, and thus provides better overlap with surveys at much lower redshifts. Eighty secure emission line galaxies are detected. However, based on their clear continuum emission shortward of the line or the presence of multiple lines, none of these can be Ly-alpha emission at z~6.5. Our null result of finding no z~6.5 Ly-alpha emitters suggests that the number density of Ly-alpha emitters with L>2x10^(42) erg/s declines by ~2 between z~3 and z~6.5.Comment: accepted by ApJ Letters (originally submitted June 11, 2004

    Survival of Massive Star-forming Galaxies in Cluster Cores Drives Gas-Phase Metallicity Gradients : The Effects of Ram Pressure Stripping

    Get PDF
    Recent observations of galaxies in a cluster at z=0.35 show that their integrated gas-phase metallicities increase with decreasing cluster-centric distance. To test if ram pressure stripping (RPS) is the underlying cause, we use a semi-analytic model to quantify the "observational bias" that RPS introduces into the aperture-based metallicity measurements. We take integral field spectroscopy of local galaxies, remove gas from their outer galactic disks via RPS, and then conduct mock slit observations of cluster galaxies at z=0.35. Our RPS model predicts a typical cluster-scale metallicity gradient of -0.03 dex/Mpc. By removing gas from the outer galactic disks, RPS introduces a mean metallicity enhancement of +0.02 dex at a fixed stellar mass. This gas removal and subsequent quenching of star formation preferentially removes low mass cluster galaxies from the observed star-forming population. As only the more massive star-forming galaxies survive to reach the cluster core, RPS produces a cluster-scale stellar mass gradient of -0.05 log(M_*/M_sun)/Mpc. This mass segregation drives the predicted cluster-scale metallicity gradient of -0.03 dex/Mpc. However, the effects of RPS alone can not explain the higher metallicities measured in cluster galaxies at z=0.35. We hypothesize that additional mechanisms including steep internal metallicity gradients and self-enrichment due to gas strangulation are needed to reproduce our observations at z=0.35.Comment: 17 pages, 21 figures, accepted for publication Ap

    A molecular perspective on the limits of life: Enzymes under pressure

    Full text link
    From a purely operational standpoint, the existence of microbes that can grow under extreme conditions, or "extremophiles", leads to the question of how the molecules making up these microbes can maintain both their structure and function. While microbes that live under extremes of temperature have been heavily studied, those that live under extremes of pressure have been neglected, in part due to the difficulty of collecting samples and performing experiments under the ambient conditions of the microbe. However, thermodynamic arguments imply that the effects of pressure might lead to different organismal solutions than from the effects of temperature. Observationally, some of these solutions might be in the condensed matter properties of the intracellular milieu in addition to genetic modifications of the macromolecules or repair mechanisms for the macromolecules. Here, the effects of pressure on enzymes, which are proteins essential for the growth and reproduction of an organism, and some adaptations against these effects are reviewed and amplified by the results from molecular dynamics simulations. The aim is to provide biological background for soft matter studies of these systems under pressure.Comment: 16 pages, 8 figure

    Enhancement of the Spin Accumulation at the Interface Between a Spin-Polarized Tunnel Junction and a Semiconductor

    Full text link
    We report on spin injection experiments at a Co/Al2_2O3_3/GaAs interface with electrical detection. The application of a transverse magnetic field induces a large voltage drop ΔV\Delta V at the interface as high as 1.2mV for a current density of 0.34 nA.μm2\mu m^{-2}. This represents a dramatic increase of the spin accumulation signal, well above the theoretical predictions for spin injection through a ferromagnet/semiconductor interface. Such an enhancement is consistent with a sequential tunneling process via localized states located in the vicinity of the Al2_2O3_3/GaAs interface. For spin-polarized carriers these states act as an accumulation layer where the spin lifetime is large. A model taking into account the spin lifetime and the escape tunneling time for carriers travelling back into the ferromagnetic contact reproduces accurately the experimental results

    Transport properties in Simplified Double Exchange model

    Full text link
    Transport properties of the manganites by the double-exchange mechanism are considered. The system is modeled by a simplified double-exchange model, i.e. the Hund coupling of the itinerant electron spins and local spins is simplified to the Ising-type one. The transport properties such as the electronic resistivity, the thermal conductivity, and the thermal power are calculated by using Dynamical mean-field theory. The transport quantities obtained qualitatively reproduce the ones observed in the manganites. The results suggest that the Simplified double exchange model underlies the key properties of the manganites.Comment: 5 pages, 5 eps figure
    corecore