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Abstract
We present a new 3D code - VENUS+Æf - for neoclassical transport calculations in

nonaxisymmetric toroidal systems. Numerical drift orbits from the original VENUS code
and theÆf method developed for tokamak transport calculations are combined. The first
results obtained with VENUS+Æf are compared with neoclassical theory for different
collisional regimes in a JT-60 tokamak test case both for mono-energetic particles and
for a Maxwellian distribution; good agreement is found. Successful benchmarking of the
bootstrap current in the W7-X configuration with the DKES code for different collision-
ality regimes as well as further VENUS+Æf developments are described.
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1. INTRODUCTION

The bootstrap currentjb is connected with collisional movements of the charged par-
ticles trapped in local mirror fields. This current arises from the asymmetric transfer of
parallel momentum due to the radial drift of trapped particles.

Many theoretical, numerical and experimental investigations for different tokamaks
and stellarators/heliotrons are devoted to the bootstrap current calculations. For example,
analytical neoclassical theory1 yields for tokamaks in the paraxial approximation (the
minor plasma radiusr is much smaller than the major plasma radiusR) the relation:
jb = ft � 1

Bp

dp
dr

, whereft ' 1:46
q

r
R

is the trapped particle fraction,p is the plasma
pressure, andBp is the poloidal magnetic field. More generally, as a numerical example,
the CQL3D code2 computes neoclassical transport coefficients for general axisymmetric
equilibria for arbitrary collisionality regimes.

For nonaxisymmetric toroidal systems, there are several models and approaches. The
problems are connected with the complicated 3D structure of the stellarator magnetic
fields. One quasi-analytical fluid moment, the so-called Shaing-Callen approach3, has a
compact semi-analytical form derived in Ref. 4. This expression, describing the colli-
sionless asymptote, i.e. the bootstrap coefficient becomes independent of collisionality,
is the basis for several numerical tools with self-consistent iterative equilibria, e.g. the
SPBSC code5 (NIFS, Japan) and the TERPSICHORE-BOOTSP code6 (CRPP, Switzer-
land). With both codes, the impact of the bootstrap current on the MHD stability can
be analyzed for quite different magnetic configurations. Successful benchmarks of these
fluid moment model codes for JT-60, W7-X and LHD configurations were reported in
Ref. 7.

Another existing approach for bootstrap current calculations is the Drift Kinetic Equa-
tion Solver, DKES8, used mainly with finite radial electric field. The DKES code was
applied for the Wendelstein-7X (W7-X, Greifswald, Germany) device, which has been
optimized towards small bootstrap currents9. Another important application of the DKES
code was for the National Compact Stellarator eXperiment10 (NCSX, PPPL, USA), where
up to the50% of the rotational transform is provided by the bootstrap current, which
might affect the MHD stability properties. For very low collisionalities, i.e. deep in the
long-mean-free-path (lmfp) regime, the1st order distribution function becomes highly
localized close to the passing - trapped particle boundary with increasing radial electric
field. For these conditions, DKES usually provides transport coefficients with large un-
certainties depending on the specific magnetic configuration. Furthermore, no solution
can be obtained by DKES for fairly large radial electric fields.

The discrepancy between the DKES code and the Shaing-Callen approach for the W7-
X bootstrap current in thelmfp regime is about a factor of2:5 and has been reported in
Ref. 11. This difference can be attributed to a combination of the approximations made
in the quasi-analytic approaches and the effects of the collision operator. So, neoclassical
calculations for stellarators in the different collisionality regimes, in particular for thelmfp
regime, remain an important task.

The bootstrap current can affect the MHD equilibrium properties by causing low-
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order resonant magnetic surfaces within the plasma. In this sense, the bootstrap current
might provide a free energy source for destabilizing (global) ideal MHD kink modes in
the vicinity of these rational surfaces. Furthermore, an island divertor configuration with
a low order-rational rotational transform at the separatrix is significantly affected even
by small bootstrap currents which must be controlled in order to allow for an efficient
divertor operation (this is the case for W7-X). These examples provide motivation for a
reliable estimation of the bootstrap current.

In this paper, we present a new tool - the VENUS+Æf - 3D code based on the VENUS12

numerical orbits, the Monte Carlo technique used for the Lorentz collision operator and
theÆf weighting scheme for gyrokinetic particle simulation. The VENUS+Æf code calcu-
lates the diffusion coefficient and the bootstrap currentjb for the general 3D case and for
all collisionality regimes without semi-analytical formulas and approximations applied in
the DKES, SPBSC and TERPSICHORE-BOOTSP codes.

The paper is organized as follows. Section 2 describes the recent update of the
VENUS code which implements the additional control parameters and theÆf equations
for the neoclassical transport calculations. Section 3 shows the neoclassical transport re-
sults with this code for the standard tokamak JT-60 and Section 4 describes the VENUS+Æf

results for the advanced stellarator W7-X including a newlmfp weighting procedure, the
benchmark with the Shaing-Callen approach and with DKES results. In the Summary, the
main results and future plans are discussed.

2. The Æf EQUATIONS IMPLEMENTED IN THE VENUS CODE.

The original VENUS code uses as input the data fully describing 3D configuration
parameters such as the magnetic field spectrum and the main flux values. This input is
prepared initially by running the 3D equilibrium code VMEC13 for a given plasma bound-
ary and by performing an additional mapping to Boozer coordinates( ; �; ') with the
TERPSICHORE14 code. The numerical trajectory of a charged particle is obtained from
the guiding center drift orbit equations which are solved with Runge-Kutta integration
schemes of second and fourth orders with fixed time steps.

Collisions are taken into account by using the Lorentz pitch angle scattering model
based on the Monte Carlo technique15, which is applied at each time step,dt:

� = �0(1� �dt) +R[(1� �2
0
)�dt]1=2; (1)

where� =
vjj

v
is the pitch variable,�0 is the pitch prior to the collision event,� is the

collision frequency, andR a random number with< R >= 0; < R2 >= 1. This model
generates stochastic trajectories for different collisionality regimes provided that�dt <<

1. The complete simulation time,� , should include several collision times,�� > 1. For
thelmfp regime, these constraints require a large number of time stepsdt.

In this paper, we use the VENUS 3D numerical orbits using the time varying weight-
ing (Æf ) scheme developed initially for gyrokinetic particle simulations of neoclassical
transport for tokamaks, see Refs. 16-18. The starting drift kinetic Fokker-Planck equa-
tion for the guiding center distribution functionf in a steady-state plasma with static
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magnetic fieldB b with b the unit vector in the direction ofB and without a parallel
electric field (loop voltage) has the form:

df

dt
=
@f

@t
+ (vjjb+ vd)rf = C(f); (2)

whereC(f) is the collision operator and the velocity space variables are total energy and
magnetic moment, both being invariant during the collisionless motion. The distribution
function in its expanded formf = fM+Æf , with fM = fM( ;E) the local Maxwellian on
the flux surface , is substituted in Equation 2. Here, the basic small expansion parameter
is �=r, where� is the gyroradius andr is the minor radius. The particle (marker)i at the
magnetic surface i(t) and with the drift velocityvdi carries a weightÆfi(t) along the
VENUS numerical trajectory. The first order equation - the equation forÆfi(t) is:

dÆfi

dt
= C(Æfi)� vdi � rfM ; (3)

This equation forÆfi(t) is solved numerically. The change of the weight,�Æfi(t), is
obtained after the collisionless step� i along the drift trajectory:

�Æfi = �� i

dfM

d i

; (4)

and the pitch variable is changed according to the collision operator (1). The average
procedure is defined as

< A >=

R
AÆfd
R
fMd


=

P
AiÆfid
iR
fMd


: (5)

To get a measure of the bootstrap current, one takesAi = Bvk;i = Bvi�i. In the
v; vk;  ; �; ' phase space variables, the phase space volume of the markeri is given by

d
i = 2�v2i dvid�i
p
g
i
d id�id'i; (6)

where the Boozer Jacobian
p
g
i
( i; �i; 'i) is a function of the particle position, i.e. a local

quantity, varying along the trajectory of the markeri. At the beginning of the calculations,
a uniform Maxwellian or, in an option with less statistical noise, a series of monoenergetic
ensembles of electrons or of ions is loaded on a prescribed starting magnetic surface, and
is randomly distributed with respect to the poloidal, toroidal and pitch angle variables.
Vanishing weights are taken as initial conditions, which is equivalent to assuming the
initial distribution is Maxwellian. A steady-state solution for the bootstrap current is
observed after several collisional times [16-18].

Accurate collision operators conserving momentum and energy for like-particle col-
lisions in electron-ion plasmas for gyrokinetic simulations are given in Ref. 16. We plan
to present in the near future the VENUS+Æf results using the modified Lorentz collision
model with momentum conservation.
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3. RESULTS FROM VENUS+Æf FOR THE JT-60 TOKAMAK

To perform the comparison with the well-known analytical theory, we calculated with
VENUS+Æf the diffusion and the bootstrap current for the different collisionality regimes
at a plasma radiusr = 0:42 m in the tokamak JT-60 with minor and major plasma radii
1.0 m andR0 = 3:0 m, respectively. The typical time history of the bootstrap current near
the plateau regime for the case with�� = 0:26 is shown in Figure 1. The dimensionless
collisionality,��, is defined following Ref. 16 by�� = (r=R0)

�3=2�
p
2R0=(�V ), where

V is the thermal velocity. As expected, stationary conditions with a small statistical error
are reached after 5-10 collisional times both for the plateau and for the banana regime.

Good agreement of the VENUS+Æf code with the analytical bootstrap current1 us-
ing the simplified Lorentz collision model for the Pfirsch-Schl¨uter, plateau and banana
regimesjb = jb0=(1 +

p
�� + 1:44��) is shown in Figure 2. The calculations were per-

formed with energy convolution as in Ref. 8, i.e. we quantify the contributions of particles
with different energies in accordance with the Maxwellian distribution law.

The comparison with the analytical particle flux, proportional to the diffusion coeffi-
cient, is shown in Figure 3. In this case, again, a simplified Lorentz collision model is
used to calculate the analytical particle flux. Good agreement of the VENUS+Æf result
with the analytical poloidal dependence of the current distribution for the Pfirsch-Schl¨uter
regime is demonstrated in Figure 4. For the plot of the poloidal distribution of the local
bootstrap current, we divide the poloidal angle intompol = 40 equal bins and calculated
the fraction of the currentjb(�i) in each bin. Consequently the averaged current is calcu-
lated according to< jb >=

P
jb(�i)=mpol. To obtain low statistical errors for the poloidal

distribution through the binning process, we need a larger number of particles. For the
bootstrap current calculation, which is the average, one needs significantly less particles.

With VENUS+Æf we have also investigated the so-called “local” approach, proposed
in Ref. 20. The idea of this local approach is to return the marker after each time step
onto the initial surface with the same poloidal and toroidal angles. However, each step
gives the contribution to the particle weight in accordance with equation (4). The local
approach should give the same result as the full solution for conditions where particles
do not depart too much from their birth surface. Figure 5 confirms the equivalence of the
local approach (no radial drifts) and full trajectory (with radial drifts) runs.

4. RESULTS FROM VENUS+Æf FOR THE W7-X STELLARATOR

The mono-energetic electron or ion bootstrap current isjbe;bi = �0D
�
31
dpe;i=dr (see

Ref. 1) with the bootstrap current coefficient,D�
31

, normalized to the collisionless asymp-

tote,�0 = 0:9733
q
R=r=(�B0), of an equivalent large-aspect-ratio tokamak with circular

cross section. Energy convolution with the Maxwellian distribution function yields the
factor 1.46 (compare Ref. 1) instead of 0.9733. For the comparison of VENUS+Æf re-
sults for non-axisymmetric cases, we calculate the normalized mono-energetic coefficient
D�

31
. Here, we consider the “standard” configuration11 (referred to as “sc1”) of the stel-

larator W7-X.
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A typical time history of the bootstrap current coefficient for particles starting at half
of the plasma radius in W7-X is shown in Figure 6. Here one can see two different levels
of the bootstrap current obtained for the inverse mean free path�=V = 10�4[1=m] with
the DKES code (upper level) [11] and with the Shaing-Callen analytic formula (lower
curve). An exponential least-squares fit of the VENUS+Æf code results as obtained with
the procedure described below gives the same result for the bootstrap current coefficient
as DKES.

As reported in Ref. 21, the ripple-trapped particles in stellarators can have rapidly
increasing weights reflecting the advantage of theÆf -scheme for radial particle transport
simulations, in particular in the very-lmfp regime. This is different to the tokamak case
where the weightsÆfi are periodic functions without collisions. Those ripple-trapped
particles with largeÆfi, however, have only a small contribution to the bootstrap current
(which is mainly determined by barely trapped and barely passing particles), but have
a very negative impact on the statistical properties of theÆf -scheme. Furthermore, the
smallness assumptionÆfi << fM can be violated and a stationary result cannot be ob-
tained. Markers with rapidly increasing weights can be considered as lost particles. To
conserve the number of particles and to fulfill the assumptionÆfi << fM , we imple-
mented in the VENUS+Æf code a new procedure for such markers - the replacement of
“lost particles” (i.e. markers with e.g.Æfi > 0:01fM ) with zero weight which corresponds
to maintaining the Maxwellian on the start surface. It was shown with different numbers
of particles and for the different values of the inverse mean free path that this procedure
gives a steady-state solution for the very-lmfp regime.

In VENUS+Æf bootstrap current simulations, “lost particles” are handled in the fol-
lowing way: First they are identified by the magnitude of their weightÆfi exceeding a
numerical bound, e.g.1% of the background distributionfM . These markers are then
replaced in the simulation on the same magnetic surface, but withÆfi = 0. In this way,
conserving the number of markers, the statistical properties of theÆf -scheme are not de-
graded. New weights (Æfi = 0) reduce the small contribution of ripple-trapped particles
with strong radial drift to the estimation of the bootstrap current coefficient. One clearly
needs to make sure that the numerical bound is indeed not set too low so as to affect the
final result.

For magnetic configurations without significant drift-optimization and for small radial
electric field (1=�-regime), ripple-trapped particles are replaced after a much shorter time
compared to drift-optimized configurations or with a sufficiently large radial electric field.
Consequently, thejÆfij-bound should be fairly equivalent for the different scenarios.

From the marker eq. (4), one obtains directly an averaged relation between the bound
for jÆfij and the maximum radial displacement due to the radial drift of the ripple-trapped
particle. Consequently, this “filter” technique based onjÆfij-bounds is equivalent to the
one described in Ref. 19: “If a particle leaves the narrow annulus, the event is recorded
and the particle is put back into the middle of the annulus”. A more detailed analysis
of this “filter” effect on theD�

31
estimation with respect to theÆfi=fM bounds will be

performed in the near future.
Figure 7 presents the bootstrap current coefficientD�

31
, plotted as a function of inverse
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mean free path, obtained with the DKES code and with the VENUS+Æf code with the
new procedure for the markers with large weights. For comparative purposes, theD�

31
co-

efficient in the collisionless limit from the Shaing-Callen approach is plotted as a constant
line independent of�=V . In this plot, we show the results of the VENUS+Æf code for
the particles with the same energyE = 100eV (atB0 = 3 T, major radius 5.5 m) but with
different atomic masses (A = 0:2; 2; 20). The artificial atomic massesA = 0:2; 20 were
used only as a test for the simulations.

It is clearly seen from Figure 7 that small gyroradius (normalized to the minor radius
of the initial positionrstart, �=rstart = 0:02 for particles with atomic massA = 0:2)
exactly corresponds to the DKES results. Real ions withA = 2 andE = 100eV have
larger gyroradius and are not amenable to a local bootstrap current calculation.

The main VENUS+Æf calculations were performed on the pleiades.epfl.ch Linux
cluster. This cluster has 132 Pentium 4 processors with 2.8GHz and 2Gb of memory.
For the very-lmfp regime,�=V = 3 � 10�6[1=m], the new multi-processor VENUS+Æf
version with 50000 particles makes106 steps on 10 processors. The computation takes�
10 hours.

6. SUMMARY.

We have described the new neoclassical code VENUS+Æf - based on the VENUS
numerical orbits with the implementation of theÆf equations for the bootstrap current
and diffusion calculations. An accurate drift orbit solver in fully 3D coordinates permits
us to consider both tokamak and stellarator configurations and to take into account the
pitch angle scattering collisions.

Several successful tests and benchmarks have been performed for the tokamak JT-
60 and the stellarator W7-X, including convergence studies and the dependence of the
diffusion coefficient and the bootstrap current on collision frequency and poloidal an-
gle. We have tested several ideas to deal with the known problem of lost particles with
growing weights in the long-mean-free-path regime, which is especially relevant for the
stellarators. The successful benchmark with the DKES results clarifies the limitation of
the concept of local transport coefficients.

In the near future, we plan to include in the VENUS+Æf code the electric field effects;
the full Landau collision operator; thermalisation (not only pitch angle scattering and mo-
mentum conservation); the dependence on the density and temperature profiles (scan in
radius). We hope also to compare VENUS+Æf with other tools and with the experimen-
tal results in tokamaks and stellarators (W7-X, LHD, NCSX) within the framework of
various international collaborations.
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FIGURE CAPTIONS

Fig. 1. Time history of the normalized bootstrap current for the tokamak JT-60, with
effective collision frequency�� = 0:26 for 1000 and 6000 particles.

Fig. 2. The normalized bootstrap current from the VENUS+Æf code with energy
convolution versus the effective collision frequency�� for the tokamak JT-60. The solid
line corresponds to the Hinton-Hazeltine formulajb � (1 +

p
�� + 1:44��))

�1.
Fig. 3. The particle flux� from the VENUS+Æf code with energy convolution versus

�� for the tokamak JT-60. The solid line is the analytical neoclassical result.
Fig. 4. The normalized poloidal variation ofÆf(�)=fM in the collisional regime with

3200, 32000 and 320000 particles in comparison with the analytical neoclassical theory.
Fig. 5. The poloidal variation of the normalized local (not poloidally averaged) toka-

mak bootstrap current distribution for�� = 0:065 demonstrates the equivalence of the
local approach results (“no radial drifts” with 600, 1200 and 1500 particles) and the full
trajectory runs with 600 and 1200 particles.

Fig. 6. Time history of the normalized bootstrap current coefficientD�
31

for the in-
verse mean free path�=V = 10�4[1=m] with the VENUS+Æf code for 1000 and 10000
particles with106 time steps in the stellarator W7-X. The DKES code result is shown as
the upper level, the Shaing-Callen analytic result is shown as the lower curve.

Fig. 7. The normalized bootstrap current coefficientD�
31

versus the inverse mean free
path�=V with the VENUS+Æf code for the stellarator W7-X with atomic massA = 0:2
(squares),A = 2 (circles),A = 20 (rhomboids). The Shaing-Callen analytic result is
shown as the lower dashed curve. The DKES code results are shown as the upper solid
curve.

12



Figure 1

0 5 10 15 20 25
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

COLLISION TIMES

N
O

R
M

A
LI

Z
E

D
 B

O
O

T
S

T
R

A
P

 C
U

R
R

E
N

T
 jb

/jb
0

1000 PARTICLES
6000 PARTICLES

13



Figure 2
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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