research

Enhancement of the Spin Accumulation at the Interface Between a Spin-Polarized Tunnel Junction and a Semiconductor

Abstract

We report on spin injection experiments at a Co/Al2_2O3_3/GaAs interface with electrical detection. The application of a transverse magnetic field induces a large voltage drop ΔV\Delta V at the interface as high as 1.2mV for a current density of 0.34 nA.μm−2\mu m^{-2}. This represents a dramatic increase of the spin accumulation signal, well above the theoretical predictions for spin injection through a ferromagnet/semiconductor interface. Such an enhancement is consistent with a sequential tunneling process via localized states located in the vicinity of the Al2_2O3_3/GaAs interface. For spin-polarized carriers these states act as an accumulation layer where the spin lifetime is large. A model taking into account the spin lifetime and the escape tunneling time for carriers travelling back into the ferromagnetic contact reproduces accurately the experimental results

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020