2,162 research outputs found

    Novel Symmetry of Non-Einsteinian Gravity in Two Dimensions

    Full text link
    The integrability of R2R^2-gravity with torsion in two dimensions is traced to an ultralocal dynamical symmetry of constraints and momenta in Hamiltonian phase space. It may be interpreted as a quadratically deformed iso(2,1)iso(2,1)-algebra with the deformation consisting of the Casimir operators of the undeformed algebra. The locally conserved quantity encountered in the explicit solution is identified as an element of the centre of this algebra. Specific contractions of the algebra are related to specific limits of the explicit solutions of this model.Comment: 17 pages, TUW-92-04 (LaTeX

    Comment on: ``Trace anomaly of dilaton coupled scalars in two dimensions''

    Get PDF
    The trace anomaly for nonminimally coupled scalars in spherically reduced gravity obtained by Bousso and Hawking (hep-th/9705236) is incorrect. We explain the reasons for the deviations from our correct (published) result which is supported by several other recent papers.Comment: 2 page

    Universal conservation law and modified Noether symmetry in 2d models of gravity with matter

    Get PDF
    It is well-known that all 2d models of gravity---including theories with nonvanishing torsion and dilaton theories---can be solved exactly, if matter interactions are absent. An absolutely (in space and time) conserved quantity determines the global classification of all (classical) solutions. For the special case of spherically reduced Einstein gravity it coincides with the mass in the Schwarzschild solution. The corresponding Noether symmetry has been derived previously by P. Widerin and one of the authors (W.K.) for a specific 2d model with nonvanishing torsion. In the present paper this is generalized to all covariant 2d theories, including interactions with matter. The related Noether-like symmetry differs from the usual one. The parameters for the symmetry transformation of the geometric part and those of the matterfields are distinct. The total conservation law (a zero-form current) results from a two stage argument which also involves a consistency condition expressed by the conservation of a one-form matter ``current''. The black hole is treated as a special case.Comment: 3

    Study of diode-iris controlled waveguide slot radiators

    Get PDF
    Diode-iris controlled waveguide slot radiator

    Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints

    Get PDF
    To estimate subchondral mineralisation patterns which represent the long-term loading history of individual joints, a method has been developed employing computed tomography (CT) which permits repeated examination of living joints. The method was tested on 5 knee, 3 sacroiliac, 3 ankle and 5 shoulder joints and then investigated with X-ray densitometry. A CT absorptiometric presentation and maps of the area distribution of the subchondral bone density areas were derived using an image analyser. Comparison of the results from both X-ray densitometry and CT-absorptiometry revealed almost identical pictures of distribution of the subchondral bone density. The method may be used to examine subchondral mineralisation as a measure of the mechanical adaptability of joints in the living subject

    The Complete Solution of 2D Superfield Supergravity from graded Poisson-Sigma Models and the Super Pointparticle

    Full text link
    Recently an alternative description of 2d supergravities in terms of graded Poisson-Sigma models (gPSM) has been given. As pointed out previously by the present authors a certain subset of gPSMs can be interpreted as "genuine" supergravity, fulfilling the well-known limits of supergravity, albeit deformed by the dilaton field. In our present paper we show that precisely that class of gPSMs corresponds one-to-one to the known dilaton supergravity superfield theories presented a long time ago by Park and Strominger. Therefore, the unique advantages of the gPSM approach can be exploited for the latter: We are able to provide the first complete classical solution for any such theory. On the other hand, the straightforward superfield formulation of the point particle in a supergravity background can be translated back into the gPSM frame, where "supergeodesics" can be discussed in terms of a minimal set of supergravity field degrees of freedom. Further possible applications like the (almost) trivial quantization are mentioned.Comment: 48 pages, 1 figure. v3: after final version, typos correcte

    Study of advanced antenna techniques for rendezvous radar

    Get PDF
    Advanced antenna techniques for rendezvous and lunar landing radar system

    modCHIMERA: A novel murine closed-head model of moderate traumatic brain injury

    Get PDF
    AbstractTraumatic brain injury is a major source of global disability and mortality. Preclinical TBI models are a crucial component of therapeutic investigation. We report a tunable, monitored model of murine non-surgical, diffuse closed-head injury—modCHIMERA—characterized by impact as well as linear and rotational acceleration. modCHIMERA is based on the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) platform. We tested this model at 2 energy levels: 1.7 and 2.1 Joules—substantially higher than previously reported for this system. Kinematic analysis demonstrated linear acceleration exceeding injury thresholds in humans, although outcome metrics tracked impact energy more closely than kinematic parameters. Acute severity metrics were consistent with a complicated-mild or moderate TBI, a clinical population characterized by high morbidity but potentially reversible pathology. Axonal injury was multifocal and bilateral, neuronal death was detected in the hippocampus, and microglial neuroinflammation was prominent. Acute functional analysis revealed prolonged post-injury unconsciousness, and decreased spontaneous behavior and stimulated neurological scores. Neurobehavioral deficits were demonstrated in spatial learning/memory and socialization at 1-month. The overall injury profile of modCHIMERA corresponds with the range responsible for a substantial portion of TBI-related disability in humans. modCHIMERA should provide a reliable platform for efficient analysis of TBI pathophysiology and testing of treatment modalities.</jats:p

    Global surfaces of section in the planar restricted 3-body problem

    Get PDF
    The restricted planar three-body problem has a rich history, yet many unanswered questions still remain. In the present paper we prove the existence of a global surface of section near the smaller body in a new range of energies and mass ratios for which the Hill's region still has three connected components. The approach relies on recent global methods in symplectic geometry and contrasts sharply with the perturbative methods used until now.Comment: 11 pages, 1 figur

    Sierpinski signal generates 1/fα1/f^\alpha spectra

    Full text link
    We investigate the row sum of the binary pattern generated by the Sierpinski automaton: Interpreted as a time series we calculate the power spectrum of this Sierpinski signal analytically and obtain a unique rugged fine structure with underlying power law decay with an exponent of approximately 1.15. Despite the simplicity of the model, it can serve as a model for 1/fα1/f^\alpha spectra in a certain class of experimental and natural systems like catalytic reactions and mollusc patterns.Comment: 4 pages (4 figs included). Accepted for publication in Physical Review
    • …
    corecore