35 research outputs found
Advances in Above- and In-Water Radiometry, Volume 1: Enhanced Legacy and State-of-the-Art Instrument Suites
This publication documents the scientific advances associated with new instrument systems and accessories built to improve above- and in-water observations of the apparent optical properties (AOPs) of aquatic ecosystems. The perspective is to obtain high quality data in offshore, nearshore, and inland waters with equal efficacy. The principal objective is to be prepared for the launch of the next-generation ocean color satellites with the most capable commercial off-the-shelf (COTS) instrumentation in the shortest time possible. The technologies described herein are designed to either improve legacy radiometric systems or to provide entirely new hybrid sampling capabilities, so as to satisfy the requirements established for diverse remote sensing requirements. Both above- and in-water instrument suites are documented with software options for autonomous control of data collection activities. The latter includes an airborne instrument system plus unmanned surface vessel (USV) and buoy concepts
Inter-comparison of phytoplankton functional type phenology metrics derived from ocean color algorithms and Earth System Models
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordOcean color remote sensing of chlorophyll concentration has revolutionized our understanding of the biology of the oceans. However, a comprehensive understanding of the structure and function of oceanic ecosystems requires the characterization of the spatio-temporal variability of various phytoplankton functional types (PFTs), which have differing biogeochemical roles. Thus, recent bio-optical algorithm developments have focused on retrieval of various PFTs. It is important to validate and inter-compare the existing PFT algorithms; however direct comparison of retrieved variables is non-trivial because in those algorithms PFTs are defined differently. Thus, it is more plausible and potentially more informative to focus on emergent properties of PFTs, such as phenology. Furthermore, ocean color satellite PFT data sets can play a pivotal role in informing and/or validating the biogeochemical routines of Earth System Models. Here, the phenological characteristics of 10 PFT satellite algorithms and 7 latest-generation climate models from the Coupled Model Inter-comparison Project (CMIP5) are inter-compared as part of the International Satellite PFT Algorithm Inter-comparison Project. The comparison is based on monthly satellite data (mostly SeaWiFS) for the 2003–2007 period. The phenological analysis is based on the fraction of microplankton or a similar variable for the satellite algorithms and on the carbon biomass due to diatoms for the climate models. The seasonal cycle is estimated on a per-pixel basis as a sum of sinusoidal harmonics, derived from the Discrete Fourier Transform of the variable time series. Peak analysis is then applied to the estimated seasonal signal and the following phenological parameters are quantified for each satellite algorithm and climate model: seasonal amplitude, percent seasonal variance, month of maximum, and bloom duration. Secondary/double blooms occur in many areas and are also quantified. The algorithms and the models are quantitatively compared based on these emergent phenological parameters. Results indicate that while algorithms agree to a first order on a global scale, large differences among them exist; differences are analyzed in detail for two Longhurst regions in the North Atlantic: North Atlantic Drift Region (NADR) and North Atlantic Subtropical Gyre West (NASW). Seasonal cycles explain the most variance in zonal bands in the seasonally-stratified subtropics at about 30° latitude in the satellite PFT data. The CMIP5 models do not reproduce this pattern, exhibiting higher seasonality in mid and high-latitudes and generally much more spatially homogeneous patterns in phenological indices compared to satellite data. Satellite data indicate a complex structure of double blooms in the Equatorial region and mid-latitudes, and single blooms on the poleward edges of the subtropical gyres. In contrast, the CMIP5 models show single annual blooms over most of the ocean except for the Equatorial band and Arabian Sea.NASAEuropean Space Agency (ESA
No evidence for involvement of SDHD in neuroblastoma pathogenesis
BACKGROUND: Deletions in the long arm of chromosome 11 are observed in a subgroup of advanced stage neuroblastomas with poor outcome. The deleted region harbours the tumour suppressor gene SDHD that is frequently mutated in paraganglioma and pheochromocytoma, which are, like neuroblastoma, tumours originating from the neural crest. In this study, we sought for evidence for involvement of SDHD in neuroblastoma. METHODS: SDHD was investigated on the genome, transcriptome and proteome level using mutation screening, methylation specific PCR, real-time quantitative PCR based homozygous deletion screening and mRNA expression profiling, immunoblotting, functional protein analysis and ultrastructural imaging of the mitochondria. RESULTS: Analysis at the genomic level of 67 tumour samples and 37 cell lines revealed at least 2 bona-fide mutations in cell lines without allelic loss at 11q23: a 4bp-deletion causing skip of exon 3 resulting in a premature stop codon in cell line N206, and a Y93C mutation in cell line NMB located in a region affected by germline SDHD mutations causing hereditary paraganglioma. No evidence for hypermethylation of the SDHD promotor region was observed, nor could we detect homozygous deletions. Interestingly, SDHD mRNA expression was significantly reduced in SDHD mutated cell lines and cell lines with 11q allelic loss as compared to both cell lines without 11q allelic loss and normal foetal neuroblast cells. However, protein analyses and assessment of mitochondrial morphology presently do not provide clues as to the possible effect of reduced SDHD expression on the neuroblastoma tumour phenotype. CONCLUSIONS: Our study provides no indications for 2-hit involvement of SDHD in the pathogenesis of neuroblastoma. Also, although a haplo-insufficient mechanism for SDHD involvement in advanced stage neuroblastoma could be considered, the present data do not provide consistent evidence for this hypothesis
Death-associated protein 3 is overexpressed in human thyroid oncocytic tumours
Background: The human death-associated protein 3 (hDAP3) is a GTP-binding constituent of the small subunit of the mitochondrial ribosome with a pro-apoptotic function.Methods: A search through publicly available microarray data sets showed 337 genes potentially coregulated with the DAP3 gene. The promoter sequences of these 337 genes and 70 out of 85 mitochondrial ribosome genes were analysed in silico with the DAP3 gene promoter sequence. The mitochondrial role of DAP3 was also investigated in the thyroid tumours presenting various mitochondrial contents. Results: The study revealed nine transcription factors presenting enriched motifs for these gene promoters, five of which are implicated in cellular growth (ELK1, ELK4, RUNX1, HOX11-CTF1, TAL1-ternary complex factor 3) and four in mitochondrial biogenesis (nuclear respiratory factor-1 (NRF-1), GABPA, PPARG-RXRA and estrogen-related receptor alpha (ESRRA)). An independent microarray data set showed the overexpression of ELK1, RUNX1 and ESRRA in the thyroid oncocytic tumours. Exploring the thyroid tumours, we found that DAP3 mRNA and protein expression is upregulated in tumours presenting a mitochondrial biogenesis compared with the normal tissue. ELK1 and ESRRA were also showed upregulated with DAP3. Conclusion: ELK1 and ESRRA may be considered as potential regulators of the DAP3 gene expression. DAP3 may participate in mitochondrial maintenance and play a role in the balance between mitochondrial homoeostasis and tumourigenesis
IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation Volume 7.0. Aquatic Primary Productivity Field Protocols for Satellite Validation and Model Synthesis. (IOCCG Protocols Series, Volume 7.0). DOI: http://dx.doi.org/10.25607/OBP-1835
In 2018, a working group sponsored by the NASA Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) project, in conjunction with the International Ocean Colour Coordinating Group (IOCCG), European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), and Japan Aerospace Exploration Agency (JAXA), was assembled with the aim to develop community consensus on multiple methods for measuring aquatic primary productivity used for satellite validation and model synthesis. A workshop to commence the working group efforts was held December 5–7, 2018, at the University Space Research Association headquarters in Columbia, MD, USA, bringing together 26 active researchers from 16 institutions. In this document, we discuss and develop the workshop findings as they pertain to primary productivity measurements, including the essential issues, nuances, definitions, scales, uncertainties, and ultimately best practices for data collection across multiple methodologies