456 research outputs found
Counterterms vs. Dualities
We investigate and clarify the mutual compatibility of the higher order
corrections arising in supergravity and string theory effective actions and the
non-linear duality symmetries of these theories. Starting from a conventional
tree level action leading to duality invariant equations of motion, we show how
to accommodate duality invariant counterterms given as functionals of both
electric and magnetic fields in a perturbative expansion, and to deduce from
them a non-polynomial bona fide action satisfying the Gaillard-Zumino
constraint. There exists a corresponding consistency constraint in the
non-covariant Henneaux-Teitelboim formalism which ensures that one can always
restore diffeomorphism invariance by perturbatively solving this functional
identity. We illustrate how this procedure works for the R^2 \nabla F \nabla F
and F^4 counterterms in Maxwell theory.Comment: 15 page
E{7(7)} Symmetry and Finiteness of N=8 Supergravity
We study N=8 supergravity deformed by the presence of the candidate
counterterms. We show that even though they are invariant under undeformed
E{7(7)}, all of the candidate counterterms violate the deformed E{7(7)} current
conservation. The same conclusion follows from the uniqueness of the Lorentz
and SU(8) covariant, E{7(7)} invariant unitarity constraint expressing the
56-dimensional E{7(7)} doublet via 28 independent vectors. Therefore E{7(7)}
duality predicts the all-loop UV finiteness of perturbative N=8 supergravity.Comment: 18 page
K(E10), Supergravity and Fermions
We study the fermionic extension of the E10/K(E10) coset model and its
relation to eleven-dimensional supergravity. Finite-dimensional spinor
representations of the compact subgroup K(E10) of E(10,R) are studied and the
supergravity equations are rewritten using the resulting algebraic variables.
The canonical bosonic and fermionic constraints are also analysed in this way,
and the compatibility of supersymmetry with local K(E10) is investigated. We
find that all structures involving A9 levels 0,1 and 2 nicely agree with
expectations, and provide many non-trivial consistency checks of the existence
of a supersymmetric extension of the E10/K(E10) coset model, as well as a new
derivation of the `bosonic dictionary' between supergravity and coset
variables. However, there are also definite discrepancies in some terms
involving level 3, which suggest the need for an extension of the model to
infinite-dimensional faithful representations of the fermionic degrees of
freedom.Comment: 50 page
E11, generalised space-time and equations of motion in four dimensions
We construct the non-linear realisation of the semi-direct product of E11 and
its first fundamental representation at low levels in four dimensions. We
include the fields for gravity, the scalars and the gauge fields as well as the
duals of these fields. The generalised space-time, upon which the fields
depend, consists of the usual coordinates of four dimensional space-time and
Lorentz scalar coordinates which belong to the 56-dimensional representation of
E7. We demand that the equations of motion are first order in derivatives of
the generalised space-time and then show that they are essentially uniquely
determined by the properties of the E11 Kac-Moody algebra and its first
fundamental representation. The two lowest equations correctly describe the
equations of motion of the scalars and the gauge fields once one takes the
fields to depend only on the usual four dimensional space-time
Effects of mesenchymal stromal cells versus serum on tendon healing in a controlled experimental trial in an equine model
Abstract Background Mesenchymal stromal cells (MSC) have shown promising results in the treatment of tendinopathy in equine medicine, making this therapeutic approach seem favorable for translation to human medicine. Having demonstrated that MSC engraft within the tendon lesions after local injection in an equine model, we hypothesized that they would improve tendon healing superior to serum injection alone. Methods Quadrilateral tendon lesions were induced in six horses by mechanical tissue disruption combined with collagenase application 3Â weeks before treatment. Adipose-derived MSC suspended in serum or serum alone were then injected intralesionally. Clinical examinations, ultrasound and magnetic resonance imaging were performed over 24Â weeks. Tendon biopsies for histological assessment were taken from the hindlimbs 3Â weeks after treatment. Horses were sacrificed after 24Â weeks and forelimb tendons were subjected to macroscopic and histological examination as well as analysis of musculoskeletal marker expression. Results Tendons injected with MSC showed a transient increase in inflammation and lesion size, as indicated by clinical and imaging parameters between week 3 and 6 (pâ<â0.05). Thereafter, symptoms decreased in both groups and, except that in MSC-treated tendons, mean lesion signal intensity as seen in T2w magnetic resonance imaging and cellularity as seen in the histology (pâ<â0.05) were lower, no major differences could be found at week 24. Conclusions These data suggest that MSC have influenced the inflammatory reaction in a way not described in tendinopathy studies before. However, at the endpoint of the current study, 24Â weeks after treatment, no distinct improvement was observed in MSC-treated tendons compared to the serum-injected controls. Future studies are necessary to elucidate whether and under which conditions MSC are beneficial for tendon healing before translation into human medicine
Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions
We consider the reduction of the duality invariant approach to M-theory by a
U-duality group valued Scherk-Schwarz twist. The result is to produce
potentials for gauged supergravities that are normally associated with
non-geometric compactifications. The local symmetry reduces to gauge
transformations with the gaugings exactly matching those of the embedding
tensor approach to gauged supergravity. Importantly, this approach now includes
a nontrivial dependence of the fields on the extra coordinates of the extended
space.Comment: 22 pages Latex; v2: typos corrected and references adde
E7(7) formulation of N=2 backgrounds
In this paper we reformulate N=2 supergravity backgrounds arising in type II
string theory in terms of quantities transforming under the U-duality group
E7(7). In particular we combine the Ramond--Ramond scalar degrees of freedom
together with the O(6,6) pure spinors which govern the Neveu-Schwarz sector by
considering an extended version of generalised geometry. We give
E7(7)-invariant expressions for the Kahler and hyperkahler potentials
describing the moduli space of vector and hypermultiplets, demonstrating that
both correspond to standard E7(7) coset spaces. We also find E7(7) expressions
for the Killing prepotentials defining the scalar potential, and discuss the
equations governing N=1 vacua in this formalism.Comment: 40 pages, final version to appear in JHE
On duality symmetry in perturbative quantum theory
Non-compact symmetries of extended 4d supergravities involve duality
rotations of vectors and thus are not manifest off-shell invariances in
standard "second-order" formulation. To study how such symmetries are realised
in the quantum theory we consider examples in 2 dimensions where vector-vector
duality is replaced by scalar-scalar one. Using a "doubled" formulation, where
fields and their momenta are treated on an equal footing and the duality
becomes a manifest symmetry of the action (at the expense of Lorentz symmetry),
we argue that the corresponding on-shell quantum effective action or S-matrix
are duality symmetric as well as Lorentz invariant. The simplest case of
discrete Z_2 duality corresponds to a symmetry of the S-matrix under flipping
the sign of the negative-chirality scalars in 2 dimensions or phase rotations
of chiral (definite-helicity) parts of vectors in 4 dimensions. We also briefly
discuss some 4d models and comment on implications of our analysis for extended
supergravities.Comment: 21 pages, Latex v2: comments and references added v3: references and
minor comments adde
The local symmetries of M-theory and their formulation in generalised geometry
In the doubled field theory approach to string theory, the T-duality group is
promoted to a manifest symmetry at the expense of replacing ordinary Riemannian
geometry with generalised geometry on a doubled space. The local symmetries are
then given by a generalised Lie derivative and its associated algebra. This
paper constructs an analogous structure for M-theory. A crucial by-product of
this is the derivation of the physical section condition for M-theory
formulated in an extended space.Comment: 20 pages, v2: Author Name corrected, v3: typos correcte
Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,Îł) in the ESR Storage Ring
© 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio
- âŠ