6,204 research outputs found
Perturbations in the Kerr-Newman Dilatonic Black Hole Background: I. Maxwell waves
In this paper we analyze the perturbations of the Kerr-Newman dilatonic black
hole background. For this purpose we perform a double expansion in both the
background electric charge and the wave parameters of the relevant quantities
in the Newman-Penrose formalism. We then display the gravitational, dilatonic
and electromagnetic equations, which reproduce the static solution (at zero
order in the wave parameter) and the corresponding wave equations in the Kerr
background (at first order in the wave parameter and zero order in the electric
charge). At higher orders in the electric charge one encounters corrections to
the propagations of waves induced by the presence of a non-vanishing dilaton.
An explicit computation is carried out for the electromagnetic waves up to the
asymptotic form of the Maxwell field perturbations produced by the interaction
with dilatonic waves. A simple physical model is proposed which could make
these perturbations relevant to the detection of radiation coming from the
region of space near a black hole.Comment: RevTeX, 36 pages in preprint style, 1 figure posted as a separate PS
file, submitted to Phys. Rev.
Affect of brane thickness on microscopic tidal-charged black holes
We study the phenomenological implications stemming from the dependence of
the tidal charge on the brane thickness for the evaporation and decay of
microscopic black holes. In general, the larger , the longer are the black
hole life-times and the greater their maximum mass for those cases in which the
black hole can grow. In particular, we again find that tidal-charged black
holes might live long enough to escape the detectors and even the gravitational
field of the Earth, thus resulting in large amounts of missing energy. However,
under no circumstances could TeV-scale black holes grow enough to enter the
regime of Bondi accretion.Comment: 6 pages, 2 figures, Clarification of tidal charge expression.
Additional justification of constraint
New perturbative solutions of the Kerr-Newman dilatonic black hole field equations
This work describes new perturbative solutions to the classical,
four-dimensional Kerr--Newman dilaton black hole field equations. Our solutions
do not require the black hole to be slowly rotating. The unperturbed solution
is taken to be the ordinary Kerr solution, and the perturbation parameter is
effectively the square of the charge-to-mass ratio of the
Kerr--Newman black hole. We have uncovered a new, exact conjugation (mirror)
symmetry for the theory, which maps the small coupling sector to the strong
coupling sector (). We also calculate the gyromagnetic ratio of
the black hole.Comment: Revtex, 27 page
Microfield Dynamics of Black Holes
The microcanonical treatment of black holes as opposed to the canonical
formulation is reviewed and some major differences are displayed. In particular
the decay rates are compared in the two different pictures.Comment: 22 pages, 4 figures, Revtex, Minor change in forma
Black Extended Objects, Naked Singularities and P-Branes
We treat the horizons of charged, dilaton black extended objects as quantum
mechanical objects. We show that the S matrix for such an object can be written
in terms of a p-brane-like action. The requirements of unitarity of the S
matrix and positivity of the p-brane tension equivalent severely restrict the
number of space-time dimensions and the allowed values of the dilaton parameter
a. Generally, black objects transform at the extremal limit into p-branes.Comment: 9 pages, REVTE
Seymour K. Padnos: Family Enterpreneur
Biography of Michigan entrepreneur Seymour K. Padnos. The Seymour and Esther Padnos Hall of Science bears the name of the long-time supporters of Grand Valley.https://scholarworks.gvsu.edu/reports/1016/thumbnail.jp
- …