158 research outputs found
Isomorphs in model molecular liquids
Isomorphs are curves in the phase diagram along which a number of static and
dynamic quantities are invariant in reduced units. A liquid has good isomorphs
if and only if it is strongly correlating, i.e., the equilibrium
virial/potential energy fluctuations are more than 90% correlated in the NVT
ensemble. This paper generalizes isomorphs to liquids composed of rigid
molecules and study the isomorphs of two systems of small rigid molecules, the
asymmetric dumbbell model and the Lewis-Wahnstrom OTP model. In particular, for
both systems we find that the isochoric heat capacity, the excess entropy, the
reduced molecular center-of-mass self part of the intermediate scattering
function, the reduced molecular center-of-mass radial distribution function to
a good approximation are invariant along an isomorph. In agreement with theory,
we also find that an instantaneous change of temperature and density from an
equilibrated state point to another isomorphic state point leads to no
relaxation. The isomorphs of the Lewis-Wahnstrom OTP model were found to be
more approximative than those of the asymmetric dumbbell model, which is
consistent with the OTP model being less strongly correlating. For both models
we find "master isomorphs", i.e., isomorphs have identical shape in the
virial/potential energy phase diagram.Comment: 20 page
A measure on the set of compact Friedmann-Lemaitre-Robertson-Walker models
Compact, flat Friedmann-Lemaitre-Robertson-Walker (FLRW) models have recently
regained interest as a good fit to the observed cosmic microwave background
temperature fluctuations. However, it is generally thought that a globally,
exactly-flat FLRW model is theoretically improbable. Here, in order to obtain a
probability space on the set F of compact, comoving, 3-spatial sections of FLRW
models, a physically motivated hypothesis is proposed, using the density
parameter Omega as a derived rather than fundamental parameter. We assume that
the processes that select the 3-manifold also select a global mass-energy and a
Hubble parameter. The inferred range in Omega consists of a single real value
for any 3-manifold. Thus, the obvious measure over F is the discrete measure.
Hence, if the global mass-energy and Hubble parameter are a function of
3-manifold choice among compact FLRW models, then probability spaces
parametrised by Omega do not, in general, give a zero probability of a flat
model. Alternatively, parametrisation by the injectivity radius r_inj ("size")
suggests the Lebesgue measure. In this case, the probability space over the
injectivity radius implies that flat models occur almost surely (a.s.), in the
sense of probability theory, and non-flat models a.s. do not occur.Comment: 19 pages, 4 figures; v2: minor language improvements; v3:
generalisation: m, H functions of
Magnetorheology of alginate ferrogels
Magnetorheological (MR) effect is a phenomenon typical of suspensions of magnetizable particles in a liquid carrier, characterized by strong changes of their mechanical properties in response to applied magnetic fields. Its origin is on the migration of magnetized particles and their aggregation into chain-like structures. However, for ferrogels, consisting of dispersions of magnetic particles in a polymer matrix, migration of particles is hindered by the elastic forces of the polymer network, preventing from strong MR effect. Interestingly, we demonstrate in this manuscript that strong MR effect in robustly cross-linked polymer ferrogels is still possible. Experimental results showed enhancement of the storage modulus of more than one order of magnitude for alginate ferrogels containing less than about 10 vol.% of iron particles under moderate magnetic fields. The differential feature of these ferrogels is that, instead of individual particles, the disperse phase consisted of large clusters of iron microparticles homogeneously distributed within the polymer networks. These clusters of magnetic particles were formed at the stage of the preparation of the ferrogels and their presence within the polymer networks had two main consequences. First, the volume fraction of clusters was considerably larger than this of individual particles, resulting in a larger effective volume fraction of solids. Second, since the force of magnetic attraction between magnetic bodies is roughly proportional to the cube of the body size, the existence of such clusters favored inter-cluster interaction under a magnetic field and the appearance of strong MR effect. On this basis, we demonstrated by theoretical modeling that the strong MR effect displayed by the alginate ferrogels of the present work can be quantitatively explained by assuming the existence of large, roughly spherical particle aggregates formed at the stage of the preparation of the ferrogels. Our theoretical model provides a reasonable quantitative prediction of the experimental resultsThis study was supported by project FIS2017-85954-R (Ministerio de Economía, Industria y Competitividad, MINECO, and Agencia Estatal de Investigación, AEI, Spain, cofunded by Fondo Europeo de Desarrollo Regional, FEDER, European Union). CGV acknowledges financial support by Ministerio de Ciencia, Innovación y Universidades and University of Granada, Spain, for her FPU17/00491 grant. AZ is grateful to the Program of the Ministry of Education and Science of the Russian Federation, projects 02.A03.21.0006, 3.1438.2017/4.6, and 3.5214.2017/6.7 and the Russian Fund of Basic Researches, project 18-08-0017
Ascorbic Acid, Alcohol, and Environmental Chemicals a
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73093/1/j.1749-6632.1987.tb23775.x.pd
CMB radiation in an inhomogeneous spherical space
We analyse the CMB radiation in spherical 3-spaces with non-trivial topology.
The focus is put on an inhomogeneous space which possesses observer dependent
CMB properties. The suppression of the CMB anisotropies on large angular scales
is analysed with respect to the position of the CMB observer. The equivalence
of a lens space with a Platonic cubic space is shown and used for the harmonic
analysis. We give the transformation of the CMB multipole radiation amplitude
as a function of the position of the observer. General sum rules are obtained
in terms of the squares of the expansion coefficients for invariant polynomials
on the 3-sphere
Accurate OH maser positions from the SPLASH pilot region
We report on high spatial resolution observations, using the Australia Telescope Compact Array (ATCA), of ground-state OH masers. These observations were carried out toward 196 pointing centers previously identified in the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH) pilot region, between Galactic longitudes of 334 and 344 and Galactic latitudes of -2 and +2. Supplementing our data with data from the MAGMO (Mapping the Galactic Magnetic field through OH masers) survey, we find maser emission toward 175 of the 196 target fields. We conclude that about half of the 21 nondetections were due to intrinsic variability. Due to the superior sensitivity of the followup ATCA observations, and the ability to resolve nearby sources into separate sites, we have identified 215 OH maser sites toward the 175 fields with detections. Among these 215 OH maser sites, 111 are new detections. After comparing the positions of these 215 maser sites to the literature, we identify 122 (57%) sites associated with evolved stars (one of which is a planetary nebula), 64 (30%) with star formation, two sites with supernova remnants, and 27 (13%) of unknown origin. The infrared colors of evolved star sites with symmetric maser profiles tend to be redder than those of evolved star sites with asymmetric maser profiles, which may indicate that symmetric sources are generally at an earlier evolutionary stage. © 2016. The American Astronomical Society. All rights reserved
Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae
Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organism Rhodomonas salina, an alga belonging to the cryptophytes, part of the chromalveolate supergroup. Cryptophytes are exceptional among photosynthetic chromalveolates as they use both chlorophyll a/c proteins and phycobiliproteins for light harvesting. All our data demonstrates that NPQ in cryptophytes differs significantly from other chromalveolates – e.g. diatoms and it is also unique in comparison to NPQ in green algae and in higher plants: (1) there is no light induced xanthophyll cycle; (2) NPQ resembles the fast and flexible energetic quenching (qE) of higher plants, including its fast recovery; (3) a direct antennae protonation is involved in NPQ, similar to that found in higher plants. Further, fluorescence spectroscopy and biochemical characterization of isolated photosynthetic complexes suggest that NPQ in R. salina occurs in the chlorophyll a/c antennae but not in phycobiliproteins. All these results demonstrate that NPQ in cryptophytes represents a novel class of effective and flexible non-photochemical quenching
How long do nosocomial pathogens persist on inanimate surfaces? A systematic review
BACKGROUND: Inanimate surfaces have often been described as the source for outbreaks of nosocomial infections. The aim of this review is to summarize data on the persistence of different nosocomial pathogens on inanimate surfaces. METHODS: The literature was systematically reviewed in MedLine without language restrictions. In addition, cited articles in a report were assessed and standard textbooks on the topic were reviewed. All reports with experimental evidence on the duration of persistence of a nosocomial pathogen on any type of surface were included. RESULTS: Most gram-positive bacteria, such as Enterococcus spp. (including VRE), Staphylococcus aureus (including MRSA), or Streptococcus pyogenes, survive for months on dry surfaces. Many gram-negative species, such as Acinetobacter spp., Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Serratia marcescens, or Shigella spp., can also survive for months. A few others, such as Bordetella pertussis, Haemophilus influenzae, Proteus vulgaris, or Vibrio cholerae, however, persist only for days. Mycobacteria, including Mycobacterium tuberculosis, and spore-forming bacteria, including Clostridium difficile, can also survive for months on surfaces. Candida albicans as the most important nosocomial fungal pathogen can survive up to 4 months on surfaces. Persistence of other yeasts, such as Torulopsis glabrata, was described to be similar (5 months) or shorter (Candida parapsilosis, 14 days). Most viruses from the respiratory tract, such as corona, coxsackie, influenza, SARS or rhino virus, can persist on surfaces for a few days. Viruses from the gastrointestinal tract, such as astrovirus, HAV, polio- or rota virus, persist for approximately 2 months. Blood-borne viruses, such as HBV or HIV, can persist for more than one week. Herpes viruses, such as CMV or HSV type 1 and 2, have been shown to persist from only a few hours up to 7 days. CONCLUSION: The most common nosocomial pathogens may well survive or persist on surfaces for months and can thereby be a continuous source of transmission if no regular preventive surface disinfection is performed
Excess-entropy scaling in supercooled binary mixtures
Supercooled liquids near the glass transition show remarkable non-Arrhenius transport phenomena, whose origin is yet to be clarified. Here, the authors use GPU molecular dynamics simulations for various binary mixtures in the supercooled regime to show the validity of a quasiuniversal excess-entropy scaling relation for viscosity and diffusion
- …