595 research outputs found

    Cycles of interactions in multi-gravity theories

    Get PDF
    In this paper we study multi-gravity (multi-metric and multi-vielbein) theories in the presence of cycles of interactions (cycles in the so-called `theory graph'). It has been conjectured that in multi-metric theories such cycles lead to the introduction of a ghost-like instability, which, however, is absent in the multi-vielbein version of such theories. In this paper we answer this question in the affirmative by explicitly demonstrating the presence of the ghost in such multi-metric theories in the form of dangerous higher derivative terms in the decoupling limit Lagrangian; we also explain why these terms are absent in the vielbein version of these theories. Finally we discuss the ramifications of our result on the dimensional deconstruction paradigm, which would seek an equivalence between such theories and a truncated Kaluza-Klein theory, and find that the impediment to taking the continuum limit due to a low strong-coupling scale is exacerbated by the presence of the ghost, when these theories are constructed using metrics.Comment: 25 pages; v2: corrected an error in section 5.3.1 which changes slightly the conclusions of that subsection; expanded section 6.1 to include derivation of the scaling of the cutoff; version published in JHE

    Archaeoseismology: Methodological issues and procedure

    Get PDF
    Archaeoseismic research contributes important data on past earthquakes. A limitation of the usefulness of archaeoseismology is due to the lack of continuous discussion about the methodology. The methodological issues are particularly important because archaeoseismological investigations of past earthquakes make use of a large variety of methods. Typical in situ investigations include: (1) reconstruction of the local archaeological stratigraphy aimed at defining the correct position and chronology of a destruction layer, presumably related to an earthquake; (2) analysis of the deformations potentially due to seismic shaking or secondary earthquake effects, detectable on walls; (3) analysis of the depositional characteristics of the collapsed material; (4) investigations of the local geology and geomorphology to define possible natural cause(s) of the destruction; (5) investigations of the local factors affecting the ground motion amplifications; and (6) estimation of the dynamic excitation, which affected the site under investigation. Subsequently, a 'territorial' approach testing evidence of synchronous destruction in a certain region may delineate the extent of the area struck by the earthquake. The most reliable results of an archaeoseismological investigation are obtained by application of modern geoarchaeological practice (archaeological stratigraphy plus geological–geomorphological data), with the addition of a geophysical-engineering quantitative approach and (if available) historical information. This gives a basic dataset necessary to perform quantitative analyses which, in turn, corroborate the archaeoseismic hypothesis. Since archaeoseismological investigations can reveal the possible natural causes of destruction at a site, they contribute to the wider field of environmental archaeology, that seeks to define the history of the relationship between humans and the environment. Finally, through the improvement of the knowledge on the past seismicity, these studies can contribute to the regional estimation of seismic hazard

    Phylogenetic and Molecular Characterization of a 23S Ribosomal-Rna Gene Positions the Genus Campylobacter in the Epsilon-Subdivision of the Proteobacteria and Shows That the Presence of Transcribed Spacers Is Common in Campylobacter Spp

    Get PDF
    The nucleotide sequence of a 23S rRNA gene of Campylobacter coli VC167 was determined. The primary sequence of the C. coli 23S rRNA was deduced, and a secondary-structure model was constructed. Comparison with Escherichia coli 23S rRNA showed a major difference in the C. coli rRNA at approximately position 1170 (E. coli numbering) in the form of an extra sequence block approximately 147 bp long. PCR analysis of 31 other strains of C. coli and C. jejuni showed that 69% carried a transcribed spacer of either ca, 147 or ca. 37 bp. Comparison of all sequenced Campylobacter transcribed spacers showed that the Campylobacter inserts were related in sequence and percent G+C content. All Campylobacter strains carrying transcribed spacers in their 23S rRNA genes produced fragmented 23S rRNAs. Other strains which produced unfragmented 23S rRNAs did not appear to carry transcribed spacers at this position in their 23S rRNA genes. At the 1850 region (E. coli numbering), Campylobacter 23S rRNA displayed a base pairing signature most like that of the beta and gamma subdivisions of the class Proteobacteria, but in the 270 region, Campylobacter 23S rRNA displayed a helix signature which distinguished it from the alpha, beta, and gamma subdivisions. Phylogenetic analysis comparing C. coli VC167 23S rRNA and a C. jejuni TGH9011 (ATCC 43431) 23S rRNA with 53 other completely sequenced (eu)bacterial 23S rRNAs showed that the two campylobacters form a sister group to the alpha, beta, and gamma proteobacterial 23S rRNAs, a positioning consistent with the idea that the genus Campylobacter belongs to the epsilon subdivision of the class Proteobacteria

    Comparisons between Chemical Mapping and Binding to Isoenergetic Oligonucleotide Microarrays Reveal Unexpected Patterns of Binding to the Bacillus subtilis RNase P RNA Specificity Domain†

    Get PDF
    ABSTRACT: Microarrays with isoenergetic pentamer and hexamer 20-O-methyl oligonucleotide probes with LNA (locked nucleic acid) and 2,6-diaminopurine substitutions were used to probe the binding sites on theRNase P RNA specificity domain of Bacillus subtilis. Unexpected binding patterns were revealed. Because of their enhanced binding free energies, isoenergetic probes can break short duplexes, merge adjacent loops, and/or induce refolding. This suggests new approaches to the rational design of short oligonucleotide therapeutics but limits the utility of microarrays for providing constraints for RNA structure determination. The microarray results are compared to results from chemical mapping experiments, which do provide constraints. Results from both types of experiments indicate that the RNase P RNA folds similarly in 1MNaþ and 10 mMMg2þ. Binding of RNA to RNA is important for many natural func-tions, includingproteinsynthesis (1,2), translationregulation (3,4), gene silencing (5, 6), metabolic regulation (7), RNAmodification (8, 9), etc. (10-13). Binding of oligonucleotides toRNAs is impor-tant for therapeutic approaches, such as siRNA, ribozymes, and antisense therapy (14, 15).Much remains to bediscovered, however, of the rules for predicting binding sites andpotential therapeutics

    Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

    Get PDF
    As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements

    Face, body and speech cues independently predict judgments of attractiveness

    Get PDF
    Research on human attraction frequently makes use of single-modality stimuli such as neutral-expression facial photographs as proxy indicators of an individual’s attractiveness. However, we know little about how judgments of these single-modality stimuli correspond to judgments of stimuli that incorporate multi-modal cues of face, body and speech. In the present study, ratings of attractiveness judged from videos of participants introducing themselves were independently predicted by judgments of the participant’s facial attractiveness (a neutral-expression facial photograph masked to conceal the hairstyle), body attractiveness (a photograph of the upper body), and speech attractiveness (the soundtrack to the video). We also found that ratings of the face, body and speech were positively related to each other. Our results support the assumption that the single-modality stimuli used in much attractiveness research are valid proxy indicators of overall attractiveness in ecologically valid contexts, and complement literature showing cross-modality concordance of trait attractiveness, but also recommend that research relying on assessments of individual attractiveness take account of both visual and vocal attractiveness where possible

    The estrogen-injected female mouse: new insight into the etiology of PCOS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Female mice and rats injected with estrogen perinatally become anovulatory and develop follicular cysts. The current consensus is that this adverse response to estrogen involves the hypothalamus and occurs because of an estrogen-induced alteration in the GnRH delivery system. Whether or not this is true has yet to be firmly established. The present study examined an alternate possibility in which anovulation and cyst development occurs through an estrogen-induced disruption in the immune system, achieved through the intermediation of the thymus gland.</p> <p>Methods, Results and Conclusion</p> <p>A putative role for the thymus in estrogen-induced anovulation and follicular cyst formation (a model of PCOS) was examined in female mice by removing the gland prior to estrogen injection. Whereas all intact, female mice injected with 20 ug estrogen at 5–7 days of age had ovaries with follicular cysts, no cysts were observed in animals in which thymectomy at 3 days of age preceded estrogen injection. In fact, after restoring immune function by thymocyte replacement, the majority of thymectomized, estrogen-injected mice had ovaries with corpora lutea. Thus, when estrogen is unable to act on the thymus, ovulation occurs and follicular cysts do not develop. This implicates the thymus in the cysts' genesis and discounts the role of the hypothalamus. Subsequent research established that the disease is transferable by lymphocyte infusion. Transfer took place between 100-day-old estrogen-injected and 15-day-old naïve mice only when recipients were thymectomized at 3 days of age. Thus, a prerequisite for cyst formation is the absence of regulatory T cells. Their absence in donor mice was judged to be the result of an estrogen-induced increase in the thymus' vascular permeability, causing de facto circumvention of the final stages of regulatory T cell development. The human thymus has a similar vulnerability to steroid action during the fetal stage. We propose that in utero exposure to excessive levels of steroids such as estrogen has a long-term effect on the ability of the thymus to produce regulatory T cells. In female offspring this can lead to PCOS.</p
    • …
    corecore