14,353 research outputs found

    Designing experiments for an application in laser and surface Chemistry

    No full text
    We consider the design used to collect data for a Second Harmonic Generation (SHG) experiment, where the behaviour of interfaces between two phases, for example the surface of a liquid, is investigated. These studies have implications in surfactants, catalysis, membranes and electrochemistry. Ongoing work will be described in designing experiments to investigate nonlinear models used to represent the data, relating the intensity of the SHG signal to the polarisation angles of the polarised light beam. The choice of design points and their effect on parameter estimates is investigated. Various designs and the current practice of using equal-spaced levels are investigated, and their relative merits compared on the basis of the overall aim of the chemical study

    The use of happiness research for public policy

    Get PDF
    Research on happiness tends to follow a "benevolent dictator" approach where politicians pursue people's happiness. This paper takes an antithetic approach based on the insights of public choice theory. First, we inquire how the results of happiness research may be used to improve the choice of institutions. Second, we show that the policy approach matters for the choice of research questions and the kind of knowledge happiness research aims to provide. Third, we emphasize that there is no shortcut to an optimal policy maximizing some happiness indicator or social welfare function since governments have an incentive to manipulate this indicator

    Improving the Inventory of Large Lunar Basins: Using LOLA Data to Test Previous Candidates and Search for New Ones

    Get PDF
    Topography and crustal thickness data from LOLA altimetry were used to test the validity of 98 candidate large lunar basins derived from photogeologic and earlier topographic and crustal thickness data, and to search for possible new candidates. We eliminate 23 previous candidates but find good evidence for 20 new candidates. The number of basins greater than 300 km diameter on the Moon is almost certainly a factor 2 (maybe 3?) larger than the number of named features having basin-like topography. Unified Lunar Control Net 2005 data [1] and model crustal thickness data [2] were previously used to search for possible previously unrecognized large lunar impact basins [3,4]. An inventory of 98 candidate topographic basins greater than 300 km in diameter was found [5]. This includes 33 named features (only those having basin-like topography) out of the 45 listed by Wilhelms [6], 38 additional Quasi-Circular Depressions (QCDs) found in the ULCN2005 topography, and 27 Circular Thin Areas (CTAs) found in model crustal thickness data [2]. Most named features and additional QCDs have strong CTA signatures, but there may be a class of CTAs that are not easily recognized in the old and low resolution ULCN2005 topography. Lunar Orbiter Laser Altimeter (LOLA) data have recently become publically available. We used these data to (a) refine the center and ring diameters of known basins, (b) test the viability of the candidate basins previously found (as described above), and (c) search for additional candidate basins not revealed by the earlier lower resolution data. We used the LOLA topography directly but also a recent new model crustal thickness data that includes Kaguya gravity data [7]. We repeated a Topographic Expression (TE) and a Crustal Thickness Expression (CTE) scoring exercise originally done with the basins found in ULCN and earlier model crustal thickness data [5]. Each candidate was scored on a scale from 0 (no topographic basin or circular thin area signature) to 5 (strong circular low or strong circular thin area signature). These were combined into a total score used to rank the probability for each candidate basin. We used the same GRIDVIEW software to stretch, contour and profile the LOLA and new crustal thickness data as was done with the ULCN2005 and older model crustal thickness data

    Driven transport on parallel lanes with particle exclusion and obstruction

    Get PDF
    We investigate a driven two-channel system where particles on different lanes mutually obstruct each other's motion, extending an earlier model by Popkov and Peschel Phys. Rev. E 64, 026126 (2001)]. This obstruction may occur in biological contexts due to steric hinderance where motor proteins carry cargos by "walking" on microtubules. Similarly, the model serves as a description for classical spin transport where charged particles with internal states move unidirectionally on a lattice. Three regimes of qualitatively different behavior are identified, depending on the strength of coupling between the lanes. For small and large coupling strengths the model can be mapped to a one-channel problem, whereas a rich phase behavior emerges for intermediate ones. We derive an approximate but quantitatively accurate theoretical description in terms of a one-site cluster approximation, and obtain insight into the phase behavior through the current-density relations combined with an extremal-current principle. Our results are confirmed by stochastic simulations

    The Universal Kaehler Modulus in Warped Compactifications

    Get PDF
    We construct the effective theory of the universal Kaehler modulus in warped compactifications using the Hamiltonian formulation of general relativity. The spacetime dependent 10d solution is constructed at the linear level for both the volume modulus and its axionic partner, and nontrivial cancellations of warping effects are found in the dimensional reduction. Our main result is that the Kaehler potential is not corrected by warping, up to an overall shift in the background value of the volume modulus. We extend the analysis beyond the linearized approximation by computing the fully backreacted 10d metric corresponding to a finite volume modulus fluctuation. Also, we discuss the behavior of the modulus in strongly warped regions and show that there are no mixings with light Kaluza-Klein modes. These results are important for the phenomenology and cosmology of flux compactifications.Comment: 28 pages, 1 figure; v2. corrected typos, added refs & minor clarification

    Tension dynamics in semiflexible polymers. Part I: Coarse-grained equations of motion

    Get PDF
    Based on the wormlike chain model, a coarse-grained description of the nonlinear dynamics of a weakly bending semiflexible polymer is developed. By means of a multiple scale perturbation analysis, a length-scale separation inherent to the weakly-bending limit is exploited to reveal the deterministic nature of the spatio-temporal relaxation of the backbone tension and to deduce the corresponding coarse-grained equation of motion. From this partial integro-differential equation, some detailed analytical predictions for the non-linear response of a weakly bending polymer are derived in an accompanying paper (Part II, cond-mat/0609638).Comment: 14 pages, 4 figyres. The second part of this article has the preprint no.: cond-mat/060963

    Modelling the physical multiphase interactions of HNO<sub>3</sub> between snow and air on the Antarctic Plateau (Dome C) and coast (Halley)

    Get PDF
    Emissions of nitrogen oxide (NO<sub><i>x</i></sub>  =  NO + NO<sub>2</sub>) from the photolysis of nitrate (NO<sub>3</sub><sup>−</sup>) in snow affect the oxidising capacity of the lower troposphere especially in remote regions of high latitudes with little pollution. Current air&ndash;snow exchange models are limited by poor understanding of processes and often require unphysical tuning parameters. Here, two multiphase models were developed from physically based parameterisations to describe the interaction of nitrate between the surface layer of the snowpack and the overlying atmosphere. The first model is similar to previous approaches and assumes that below a threshold temperature, <i>T</i><sub>o</sub>, the air&ndash;snow grain interface is pure ice and above <i>T</i><sub>o</sub> a disordered interface (DI) emerges covering the entire grain surface. The second model assumes that air&ndash;ice interactions dominate over all temperatures below melting of ice and that any liquid present above the eutectic temperature is concentrated in micropockets. The models are used to predict the nitrate in surface snow constrained by year-round observations of mixing ratios of nitric acid in air at a cold site on the Antarctic Plateau (Dome C; 75°06′ S, 123°33′ E; 3233 m a.s.l.) and at a relatively warm site on the Antarctic coast (Halley; 75°35′ S, 26°39′ E; 35 m a.s.l). The first model agrees reasonably well with observations at Dome C (<i>C</i><sub>v</sub>(RMSE)  =  1.34) but performs poorly at Halley (<i>C</i><sub>v</sub>(RMSE)  =  89.28) while the second model reproduces with good agreement observations at both sites (<i>C</i><sub>v</sub>(RMSE)  =  0.84 at both sites). It is therefore suggested that in winter air–snow interactions of nitrate are determined by non-equilibrium surface adsorption and co-condensation on ice coupled with solid-state diffusion inside the grain, similar to Bock et al. (2016). In summer, however, the air&ndash;snow exchange of nitrate is mainly driven by solvation into liquid micropockets following Henry's law with contributions to total surface snow NO<sub>3</sub><sup>−</sup> concentrations of 75 and 80 % at Dome C and Halley, respectively. It is also found that the liquid volume of the snow grain and air&ndash;micropocket partitioning of HNO<sub>3</sub> are sensitive to both the total solute concentration of mineral ions within the snow and pH of the snow. The second model provides an alternative method to predict nitrate concentration in the surface snow layer which is applicable over the entire range of environmental conditions typical for Antarctica and forms a basis for a future full 1-D snowpack model as well as parameterisations in regional or global atmospheric chemistry models

    Solar simulation with a rectangular beam

    Get PDF
    An existing space simulation test facility was modified by enlarging the solar simulator. Because of the restrictions imposed by existing equipment, the shape of the solar beam was altered from a circular to a rectangular cross section in order to adapt the test facility to test objects of increased size. This modification is described together with the results of preliminary measurements

    Traffic jams induced by rare switching events in two-lane transport

    Get PDF
    We investigate a model for driven exclusion processes where internal states are assigned to the particles. The latter account for diverse situations, ranging from spin states in spintronics to parallel lanes in intracellular or vehicular traffic. Introducing a coupling between the internal states by allowing particles to switch from one to another induces an intriguing polarization phenomenon. In a mesoscopic scaling, a rich stationary regime for the density profiles is discovered, with localized domain walls in the density profile of one of the internal states being feasible. We derive the shape of the density profiles as well as resulting phase diagrams analytically by a mean-field approximation and a continuum limit. Continuous as well as discontinuous lines of phase transition emerge, their intersections induce multi-critical behaviour

    Stratospheric measurement requirements and satellite-borne remote sensing capabilities

    Get PDF
    The capabilities of specific NASA remote sensing systems to provide appropriate measurements of stratospheric parameters for potential user needs were assessed. This was used to evaluate the capabilities of the remote sensing systems to perform global monitoring of the stratosphere. The following conclusions were reached: (1) The performance of current remote stratospheric sensors, in some cases, compares quite well with identified measurement requirements. Their ability to measure other species has not been demonstrated. (2) None of the current, in-situ methods have the capability to satisfy the requirements for global monitoring and the temporal constraints derived from the users needs portion of the study. (3) Existing, non-remote techniques will continue to play an important role in stratospheric investigations for both corroboration of remotely collected data and in the evolutionary development of future remote sensors
    corecore