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Driven transport on parallel lanes with particle exclusion and obstruction
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We investigate a driven two-channel system where particles on different lanes mutually obstruct each other’s
motion, extending an earlier model by Popkov and Peschel [Phys. Rev. E 64, 026126 (2001)]. This obstruction
may occur in biological contexts due to steric hinderance where motor proteins carry cargos by “walking” on
microtubules. Similarly, the model serves as a description for classical spin transport where charged particles with
internal states move unidirectionally on a lattice. Three regimes of qualitatively different behavior are identified,
depending on the strength of coupling between the lanes. For small and large coupling strengths the model can
be mapped to a one-channel problem, whereas a rich phase behavior emerges for intermediate ones. We derive an
approximate but quantitatively accurate theoretical description in terms of a one-site cluster approximation, and
obtain insight into the phase behavior through the current-density relations combined with an extremal-current
principle. Our results are confirmed by stochastic simulations.
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I. INTRODUCTION

Driven diffusive systems are of importance in various fields
of physics and biology [1,2], since they serve as simplistic
models for biological transport phenomena [3–6], traffic flow
[7–10], fast ionic conductors [11], as well as quasiclassical spin
transport [12]. Furthermore, they provide valuable insights into
nonequilibrium statistical mechanics. As an example, and in
contrast to equilibrium systems, their bulk behavior is sensitive
to the boundaries [13]. Boundary induced phase transitions
in one dimension may emerge resulting in complex phase
behavior.

The most prominent example of driven lattice gases, the
totally asymmetric exclusion process (TASEP), was originally
proposed as a simple model for the motion of multiple
ribosomes along a mRNA strand during protein translation
[14]. In this model, particles move unidirectionally along a
one-dimensional lattice, provided the next site is empty. Exact
solutions, e.g., by employing the Bethe ansatz [15] or a matrix
product ansatz [16], are feasible, yet much insight can readily
be obtained from simple mean-field considerations [2].

Intracellular transport constitutes another fascinating bio-
logical application [17] of driven systems. Here, molecular
motors such as kinesin or dynein, driven by the hydroly-
sis of adenosine triphosphate (ATP), move unidirectionally
along microtubules [3]. Macromolecules or other cellular
constituents, which often are too large to diffuse fast enough
through the crowded cytosol, are carried by motor proteins,
and are then actively transported to the location where
they are needed. Recent theoretical studies motivated by
these processes have investigated the influence of attachment
and detachment of the motors to the microtubules [18–22],
extended particles [23], the influence of defects on the track
[24–26], and the competition between different motor species
[27,28]. Further attention has been paid to transport along
several coupled channels where particles move in parallel. This
coupling can be either achieved by allowing lane-switching
events [12,29–37] or by a possible influence of a particle in

one channel on the motion in the other channel [7,38]. Here we
consider the latter case and investigate how mutual obstruction
of motor proteins on neighboring lanes, for example, stemming
from large cargos attached to them, affects the transport
properties of the system.

Driven diffusive systems may also serve as a description
for spin transport with possible applications in the field of
spintronics. For instance, such spin currents flow in a chain of
quantum dots where electrons are driven by an external voltage
in a way that only the lowest energy levels can be occupied
[39]. Hence not more than one electron of each internal state
is permitted per site and electrons located in the immediate
vicinity repel each other due to Coulomb interaction. A model
taking Pauli’s exclusion principle into account while ignoring
phase coherence has been investigated recently [12,30,31], yet
Coulomb blockade has been neglected. In the present paper
we focus on the influence of a mutual obstruction mimicking,
for example, Coulomb interaction. To identify its effect on the
collective transport properties in the clearest way, we disregard
spin-flip events which can cause intriguing behavior on their
own [12,30,31].

A simple lattice model that incorporates mutual obstruction
on two lanes has been investigated by Popkov and Peschel [7].
The steric hindrance there is manifested in the hopping rates
that explicitly depend on the configuration on the opposing
lane. As a consequence of this coupling of the lanes, a variety
of peculiar phases arises which has been neatly rationalized
in terms of a cluster approximation. Particularly, symmetry
breaking, which arises even though the boundary conditions
are symmetric, is observed and analyzed.

In this paper we extend the model of Ref. [7] by considering
asymmetric boundary conditions and rates instead of reservoirs
at the right boundary. We introduce the model in Sec. II, both
in the two-lane and in the spin-transport picture. In Sec. III we
describe the stochastic simulations and provide first insights
in how particle obstruction affects the behavior. Namely, we
identify three regimes of qualitatively different behavior. In
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Sec. IV, we analytically compute the current-density relations
within a one-site cluster approximation. Section V presents a
discussion on how the current-density relation, obtained via an
extremal-current principle, allows us to identify the system’s
different phases and to analytically predict the phase diagram.
We summarize our main findings in Sec. VI and provide a brief
conclusion.

II. MODEL

We examine a driven diffusive system which serves as
a minimal model for the transport on two parallel lanes,
which are coupled by a repulsive short-range interaction. The
same model describes classical driven spin transport with
Coulomb blockade. In the following we specify the dynamics
in detail, presenting both the two-lane and the spin-transport
representation.

A. Two-channel representation

Consider particle transport along two parallel channels,
each of them containing N discrete lattice sites; see Fig. 1.
Each site may contain at most one particle (on-site exclusion),
such that the occupation number of site i on the upper (lower)
channel, n

↑
i (n↓

i ), can only take values 0 or 1, corresponding to
a vacant or an occupied site, respectively.

Particles enter from two entangled reservoirs located at the
left-hand side of the system. At each time step, the reservoir is
in one of the four possible states: (i) double occupation with
probability κ∗, (ii) only the upper reservoir is occupied with
probability ρ

↑
res − κ∗, (iii) only the lower reservoir is occupied

with probability ρ
↓
res − κ∗, and (iv) both reservoir sites are

empty with probability 1 − ρ
↑
res − ρ

↓
res + κ∗. Thus ρ

↑
res and ρ

↓
res

are the average densities on the upper and lower reservoir,
respectively, and κ∗ corresponds to the double-occupation
density in the reservoir.

In bulk, particles move unidirectionally to the right. Due to
obstruction, the hopping rate thereby depends on the particle
configuration at the other lane. A particle attempting to proceed
by one site is obstructed if a particle resides on the subsequent
site of the other channel. However, this obstruction is relevant
only when the particle does not experience obstruction in its
current position, meaning when its current neighboring site on

e−U β↑

β↓

11

1

1

vacancy
particle

reservoir

ρ↑res.

ρ↓res.

FIG. 1. (Color online) Illustration of the two-lane representation.
Particles enter from two reservoirs at the left boundary with densities
ρ↑

res,ρ
↓
res. In bulk, hopping rates depend on the particle configuration

of the, respective, other lane. At the right boundary particles leave at
rates β↑,β↓.

e−U β↑111

reservoir

ρ↑res.ρ
↓
res.

FIG. 2. (Color online) Illustration of an exclusion model with two
internal states, adopting the language of spin transport. Particles in
state ↑ (↓) enter the system at the left boundary from a reservoir with
density ρ↑

res.(ρ
↓
res.) and leave at the right boundary with rate β↑(β↓).

In bulk, particles hop to the right, always respecting Pauli’s exclusion
principle. If an unpaired particle moves to a site which is already
occupied by a particle of the other spin state the hopping rate is
decreased to e−U ; otherwise, the hopping rate is set to 1.

the other channel is empty. We model this effect by reducing
the hopping rate to a value e−U (U > 0) in this case, while the
rate is unity for all other configurations. In the biological
context of molecular motors walking along microtubuli, the
reduced hopping rate corresponds to the spatial obstruction
stemming from large cargos attached to motor proteins.

Last, the rules of the model are completed by specifying
how particles leave the system after traversing the bulk. Here,
we consider that particles at the right boundary leave with the
exiting rates β↑,β↓ in contrast to [7] (see Fig. 1).

B. Spin-transport representation

The model can be readily interpreted in the context of
spin transport where it serves as a description for classical
spin currents (see Fig. 2). The analogy to the two-channel
picture is the following: A particle situated at the upper (lower)
lane maps to a particle with spin up (spin down). At the left
boundary particles enter from a spin reservoir with densities
ρ

↑
res,ρ

↓
res. Having traversed the lattice, they leave the system

at the right boundary with exiting rates β↑,β↓. In bulk, the
particles move to the right always respecting Pauli’s exclusion
principle, i.e., only one particle per internal state is permitted
per site. According to the two-lane representation, the hopping
rates depend on the particle configuration of the system. A
short-range repulsive interaction reduces the hopping rate for
an unpaired particle onto a site which is already occupied by a
particle of the other spin state to e−U , as compared to 1 for the
other configurations. The parameter U > 0 may be viewed as
an effective interaction potential, originating from a repulsive
Coulomb interaction, where particles on the same site (though
different spin states) gain potential energy. In this context,
one can also consider an increased hopping rate away from a
double occupation, yet, one can show that this does not change
our results qualitatively [40]. For clarity, we employ only the
two-channel representation in the following.

A model similar to the one introduced above was recently
proposed in [7]. However, only symmetric situations were
considered with entrance/exit reservoirs that were equal an
both lanes. As a further difference to our model the authors
did model the exiting processes through reservoirs at the right
side instead of exiting rates. Because we explicitly investigate
the asymmetric case, with entrance and exit properties that
differ for the two lanes, and because of our usage of exit rates
we find a multitude of interesting phenomena, summarized
in Sec. VI. The asymmetry between the two lanes requires
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a two-dimensional generalization of the extremal-current
principle. The derivation of this two-dimensional extremal-
current principle constitutes a key result of our work; we show
how it successfully describes much of the system’s behavior.

III. CLASSIFICATION OF THE SYSTEM’S SENSITIVITY
ON THE POTENTIAL

The steady-state bulk densities ρ
↑
i = 〈n↑

i 〉,ρ↓
i = 〈n↓

i 〉,
where 〈·〉 indicates a coarse-grained time average, constitute
key observables. Because of particle conservation, their tem-
poral evolution can be obtained from the particle flux ji−1 onto
site i and the one away from it, ji :

∂tρ
↑
i = j

↑
i−1 − j

↑
i ,

(1)
∂tρ

↓
i = j

↓
i−1 − j

↓
i .

The currents, j↑
i ,j

↓
i , contain correlations between neighboring

sites on the lattice. To find an analytic description, these
correlations have to be accounted for by a suitable closure
relation, e.g., by a mean-field approximation or a one-site
cluster approximation.

Stochastic simulations provide another route to gain insight
into the system’s behavior. In this section we first detail
the simulation algorithm, and then describe three classes of
behavior that emerge for different interaction strength.

A. Stochastic simulations

We have determined the system’s stationary state via
stochastic simulations with random sequential updating, using
the dynamic rules introduced in the previous section and
employing the Gillespie algorithm [41,42]. We have performed
time averages over about 105 time intervals, each containing
10 × L time steps and the lattice size is set to L = 1000. At
the left boundary, the reservoir dynamics is specified in terms
of the three parameters, ρ

↑
res,ρ

↓
res, and κ∗. Here, we restrict

the discussions to the case of relaxed reservoirs, where the
correlations in the reservoirs reflect the ones in bulk, which
is particularly illuminating and amenable to a theoretical
description. Then, the double occupation density can be
determined from the average densities, ρ

↑
res,ρ

↓
res according to

Eq. (A4) derived in the Appendix. In general, and apart from
boundary effects such as boundary layers, we found constant
density profiles in the system. To determine the corresponding
value of the average density in bulk for constant density
profiles, we only considered the 0.2 × L sites in the center
of both channels. Our simulations confirm to a large extent
the analytic approximations which are to be discussed in the
following sections.

B. Dependence on the interaction strength U

In the case of vanishing coupling, i.e., U = 0, the system
simply corresponds to two uncoupled TASEPs. In the presence
of obstruction, and thereby coupling between both channels,
this picture changes drastically upon increasing the effective
interaction strength. Our stochastic simulations show three
regimes of qualitatively different behavior, which are illus-
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FIG. 3. (Color online) Average bulk densities obtained by
stochastic simulations on the upper (red, gray) and lower lane (black)
for varying potential strength U . The parameters are ρ↑

res = ρ↓
res =

0.5, β↑ = 0.1, and β↓ = 0.3. Three regimes of qualitatively different
behavior emerge. In the first one (I) the system qualitatively behaves
like two uncoupled systems. In regime II, the density in the lower
channel strongly decreases, while the density in the upper channel is
still large. This nontrivial behavior is discussed in detail in Secs. IV
and V. In regime III, for strong coupling, the system behaves like a
one-channel TASEP.

trated in Fig. 3. In the following, we discuss these regimes,
and provide a mapping on TASEP for two of them.

1. Weak coupling

In the first regime (I), for small coupling strength U , the
system almost behaves like two uncoupled lanes, except for
the fact that the densities are slightly reduced. This regime
can be well described by a simple mean-field approximation,
where correlations between different lattice sites, i �= j ,
are neglected, 〈n↑(↓)

i n
↑(↓)
j 〉 ≈ 〈n↑(↓)

i 〉〈n↑(↓)
j 〉, or by a one-site

cluster approximation which is to be discussed in detail in
the following section. In this regime the phase behavior
qualitatively corresponds to the one already known from
TASEP. On a quantitative level, differences arise as the phase
transition lines are shifted compared to the uncoupled case.

2. Intermediate coupling

In regime II, the one of intermediate coupling strength, an
intriguing phase behavior emerges. For instance, for the set of
parameters shown in Fig. 3 , the density in the upper channel
remains rather undisturbed by the obstruction, while the one
in the lower channel drops to a comparatively small value.
The nontrivial behavior in regime II is caused by the influence
of the potential on the transport properties in bulk as well as
on the boundaries. Especially, the exiting current is strongly
influenced by the interaction potential resulting in smaller
densities at the right boundary than expected for uncoupled
systems. We rationalize this behavior in the following section.
Because the system operates far from equilibrium, this change
in the boundary conditions has a strong impact on the system.

Second, the transport properties in bulk also react sensi-
tively to the coupling. As discussed in detail in the following
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section, this causes changes in the currents’ dependences on
the bulk densities for potentials larger than a critical strength
UC = ln 4 ≈ 1.4.

Furthermore, other intriguing phenomena, such as domain
walls between a low and a high density phase, are found.
Also, there exist phases where the system depends sensitively
on both boundaries, namely, the total current of the system
is fixed by the right boundary while the exact value of the
densities in bulk depends on the left boundary.

3. Strong coupling

A further increase in U leads to strong obstruction between
the lanes with new qualitative behavior. In this regime of
strong coupling (III) double occupancy of a site almost never
occurs due to the vanishing hopping rate e−U that would yield
this configuration. Therefore the transport properties of two
coupled channels is similar to a single-channel TASEP. This
mapping cannot always be performed if the boundaries are
reservoirs. It then only holds for the special case of small
reservoir densities. Otherwise correlations between the upper
and the lower reservoir are large. They are transported in
the bulk and there destroy the effective one-lane behavior.
Especially, the behavior shown in Fig. 3 would drastically
change, if the exiting rates β↑ = 0.1 and β↓ = 0.3 would be
replaced by the corresponding right reservoirs, namely the
description holding for regime II would then apply and the
bulk densities would not show the one-channel behavior.

Introducing the total density, τi = 〈n↑
i + n

↓
i 〉, and per-

forming the limit e−U → 0, which yields 〈n↑
i n

↓
i 〉 = 0, in the

expression for the currents [Eq. (A1)], one can identify the
following mean-field current-density relation, already familiar
from TASEP:

J = τ (1 − τ ). (2)

Due to the large potential in this regime, particles on different
lanes are not able to “overtake” each other. Hence the ratio of
the densities in both channels is fixed to the value given by the
reservoir densities at the left boundary,

ρ↑

ρ↓ = ρ
↑
res

ρ
↓
res

. (3)

In Fig. 3 we have used equal reservoir densities for the upper
and the lower lane, and as a consequence the bulk densities of
both lanes are equal.

The exact phase behavior can be determined by relating
the boundary conditions of the two-lane system to the
corresponding boundary conditions of the effective one-lane
TASEP, for which the exact phase diagram is known. For
reservoir densities ρ

↑
res,ρ

↓
res < 0.5, the effective entering rate is

obtained by simply adding both reservoir densities:

αeff = ρ↑
res + ρ↓

res. (4)

The effective exiting rate displays a more complex dependence
on the boundary processes because the individual exiting rates
influence the exiting current on both channels. To find a good
estimate of the effective exiting rate, we consider the average
time a particle spends on the last lattice site before it leaves
the channel. This time is the inverse of the corresponding
exiting rate. The weight of both waiting times is given by the

ratio of particles in the upper and lower lane. Hence a fraction
ρ

↑
res/(ρ↑

res + ρ
↓
res) of all particles spend 1/β↑ time units on the

last lattice site, and a fraction ρ
↓
res/(ρ↑

res + ρ
↓
res) of the particles

1/β↓ time units. The average time is the sum of both times
weighted with their frequency,

ρ
↑
res

ρ
↑
res + ρ

↓
res

1

β↑ + ρ
↓
res

ρ
↑
res + ρ

↓
res

1

β↓ ,

yielding the effective exiting rate,

βeff = (ρ↑
res + ρ

↓
res)β↑β↓

ρ
↑
resβ↓ + ρ

↓
resβ↑ . (5)

For reservoir densities ρ
↑
res,ρ

↓
res > 0.5, the double occupa-

tion density at the reservoir does not vanish and is transported
into the system. Hence the system can exhibit total densities
larger than one if its bulk behavior is determined by the left
boundary. In this case, the description we introduce below for
the regime of intermediate coupling applies.

IV. CURRENT-DENSITY RELATION

The interaction between neighboring particles directly
affects the transport properties of the system. The current’s
dependence on the bulk densities is very sensitive on the
coupling. Above a certain value the current-density relation
changes qualitatively resulting in a rich phase behavior as we
show in the following section.

A. One-site cluster approximation

With increasing coupling strength U , the occupation num-
bers of the same site on different lanes become more and more
correlated and a simple mean-field approximation fails. How-
ever, by employing a one-site cluster approximation we obtain
a valuable expression for the currents depending on the bulk
densities as demonstrated in [7]. To account for correlations
between the same site on different lanes, we introduce, besides
the single particle densities ρ

↑
i = 〈n↑

i 〉,ρ↓
i = 〈n↓

i 〉, the double
occupation density on site i, κi := 〈n↑

i n
↓
i 〉 as an additional

variable [43].
Then, the probabilities for the other three particle configu-

rations on site i, unoccupied or occupied by one particle either
on the upper or the lower lane, can be expressed in terms of
ρ

↑
i ,ρ

↓
i , and κi . We neglect all other correlations and employ

the standard decoupling approximation scheme there.
Assuming spatially homogeneous density profiles, the

currents on the upper and the lower lane can be expressed
in terms of ρ↑,ρ↓, and κ . The details of the calculations are
presented in the Appendix. We obtain

j↑ = ρ↑(1 − ρ↑) + μ,
(6)

j↓ = ρ↓(1 − ρ↓) + μ,

where ρ↑(↓)(1 − ρ↑(↓)) is the particle current known from
TASEP and μ = κ − ρ↑ρ↓ is the correlation correction
reducing the current compared to the case without any
coupling. Here, the double occupation density κ is the positive
solution of the quadratic equation,

0 = (1 − e−U )κ2 + [1 − (1 − e−U )ρ]κ − e−Uρ↑ρ↓, (7)
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where ρ = ρ↑ + ρ↓ is the total density. We will employ these
results in the following section within the framework of an
extremal-current principle to investigate the phase behavior as
a function of the coupling strength.

In agreement with the considerations in the previous
section, the double occupation density vanishes in the limit
U → ∞, while it simplifies to κ = ρ↑ρ↓ for U → 0. The
latter limit connects the one-site cluster approximation to the
simple mean-field approximation, which is accurate for small
potentials.

B. Dependence of the currents on the potential U

The current displays a sensitive dependence on the strength
of interaction, U . For small interaction strength, the currents
on each lane are almost independent of the density on the other
lane. Indeed, these currents are approximately parabolic with
respect to the density in the respective lane; see Fig. 4(a). The
maximal current on the upper channel j

↑
max occurs for ρ↑ =

1/2,ρ↓ = 0, and ρ↑ = 1/2,ρ↓ = 1 since the obstruction does
not affect the transport on the upper lane for these densities.
With an increase in the potential U , the particle flux decreases,
in particular, for densities around ρ↑ = ρ↓ = 1/2, as shown
in Fig. 4(b).

This behavior is also reflected in the total current as shown
in Figs. 4(c) and 4(d). For small potentials, the total current

ρ↑

ρ
↓

(a) Single-channel current, j↑,
for U = 0.3

ρ↑

ρ
↓

(b) Single-channel current, j↑,
for U = 2

ρ↑

ρ
↓

(c) Total current, J , for U = 0.3

ρ↑

ρ
↓

(d) Total current, J , for U = 2

FIG. 4. (Color online) Contour plots for the individual (top)
and the total current (bottom), depending on the bulk densities, for
U = 0.3 (left) and U = 2 (right) using Eq. (6). In gray scale, black
corresponds to vanishing current, and white to the respective maximal
currents j↑

max,Jmax. The colored (gray) contour lines indicate currents
of value 0.95 · j↑

max and 0.95 · Jmax (red), 0.8 · j↑
max and 0.8 · Jmax

(blue), 0.5 · j↑
max, and 0.5 · Jmax(green), 0.3 · j↑

max and 0.3 · Jmax

(orange) from inside to outside. Increasing the obstruction strength,
the single maximum splits into two, separated by a saddle. The
transition happens at a critical value of the interaction, UC = ln 4 ≈
1.4.

in bulk displays a single maximum located at ρ↑ = ρ↓ = 1/2;
see Fig. 4(c). In this regime the potential only affects the value
of the maximum but not its position, i.e., it does not change
the topology of the phase diagrams. Beyond a critical value
of the potential, UC = ln 4 ≈ 1.4, the total current displays
a qualitatively different behavior, as has been described in
Ref. [7]. At the critical value, two maxima separated by
a saddle evolve in the current-density relation for the total
current; see Fig. 4(d). The location of these maxima is
evaluated in the Appendix. Upon further increasing U , the
maxima move apart. In the limit of large potentials two
elongated maxima evolve and the saddle becomes a valley
located at ρ↑ = 1 − ρ↓. The bimodal structure leads to a richer
phase diagram than in the weak coupling regime, U < ln 4.
Similar extrema in the currents were found previously for one-
channel systems, e.g., when next-nearest-neighbor interactions
are taken into account [44].

C. Influence of the potential U on the right boundary

At the right boundary (i = L) exiting rates control the
currents out of the system:

j
↑
EX = β↑ρ

↑
L,

(8)
j

↓
EX = β↓ρ

↓
L.

These currents are either determining the system or are virtual
currents which are important for predicting the phase behavior
in the system as explained in the following section. If these
exiting currents also set the bulk currents, i.e., if j↑ = j

↑
EX

and j↓ = j
↓
EX, we can compute the bulk densities (which then

equal the densities at the right boundary) depending on the
exiting rates via Eq. (8). The densities at the right boundary
also play a key role for determining the phase diagrams, as we
will see below. For a small coupling strength, we find ρ↑(↓) ≈
1 − β↑↓, as familiar from TASEP. The transport properties
change rapidly when repulsion between particles increases. In
particular, for potentials larger than UC the double-maxima
structure of the bulk current comes into play and causes a
discontinuous dependence of the bulk density on the exiting
rates. Such a jump in the densities is exemplified in Fig. 5 for
the case of equal exiting rates.

 0
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 1

 0  0.2  0.4  0.6  0.8  1

FIG. 5. The dependence of the bulk densities, ρ↑ = ρ↓, on equal
exiting rates β↑ = β↓ for systems determined by the right boundary.
It is obtained by evaluating Eq. (8). The interaction strength U = 3.0
is above the critical value UC.
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V. PHASE BEHAVIOR

The system’s phases depend on the boundary conditions as
well as on the strength of internal obstruction. In the following,
we employ the extremal-current principle to evaluate the
analytic expressions for the currents obtained in the previous
section to get insight into the phase behavior. We then discuss
these phases and point out some special features arising from
the coupling.

A. Extremal-current principle

The extremal-current principle (ECP) often governs the
phase behavior of driven diffusive systems [13,44,45]. So
far the ECP has only been established for one-dimensional
systems. Here we describe a two-dimensional generalization
and show that it successfully describes the phase behavior
of our two-lane model. We start with a short description of
the standard one-dimensional ECP, and then extend it to two
coupled lanes.

The ECP for transport on a single lane can be formulated
by considering two characteristic velocities. The first is the
collective velocity, vc = ∂j/∂ρ, which reveals information of
the stability of a given bulk density ρ against perturbations:
only densities with vc = 0 (as well as those determined
by the boundaries) are stable. The second quantity is the
shock velocity vs = [j (ρ1) − j (ρ2)]/(ρ1 − ρ2) that gives the
direction in which a domain wall between two densities,
ρ1 and ρ2, travels. In this way, vs determines which of
both densities, ρ1 or ρ2, dominates. To find the system’s
bulk density, it therefore suffices to first identify the stable
densities, using the collective velocity, and then, by pairwise
comparison via the shock velocity, single out the bulk density.
These considerations are summarized by the extremal-current
principle:

j = max
ρ∈[ρ+,ρ−]

j (ρ) for ρ+ > ρ−,

(9)
j = min

ρ∈[ρ+,ρ−]
j (ρ) for ρ+ < ρ−,

where ρ+ is the density at the left boundary, and ρ− is the
density at the right boundary. Hence the system is either
determined by the entering or exiting current or by an extremal
current corresponding to a density in between the boundary
densities.

On two coupled lanes, the currents in bulk are generically
influenced by both lanes. We therefore have to consider the
dependence of the currents on both ρ↑ and ρ↓. As in the
one-dimensional case, either the maximal or the minimal
(total) current (see Fig. 6, blue and green area) determines
the transport in the system, and the velocities vc and vs govern
which of both scenarios is realized. However, in order to decide
which of both cases applies it is no longer sufficient to compare
the densities at the boundaries. Because of many potentially
conflicting cases a rigorous derivation of the ECP provides a
considerable challenge. We have, however, observed that the
following intuitive version of the ECP describes our model’s
phase behavior in the full parameter space.

In the one-dimensional ECP an extremal current belonging
to a density in the interval determines the system. In the two-
dimensional scenario the interval is replaced by a rectangle

 0

 1

 0  1

1 2

3 4

FIG. 6. (Color online) Contour plot of the total current, depending
on the bulk densities. The bulk densities emerging for special values of
equal reservoir densities (ρ↑

res = ρ↓
res), namely continuously increasing

from 0 to 1, are displayed as black dots. The other parameters are
β↑ = β↓ = 0.3 and U = 3.0. The red contour line corresponds to the
total exiting current as emerges if the right boundary determines the
bulk densities. It marks the transition from the minimal (blue area,
lower left corner) to the maximal (green area, upper right corner)
current principle and two phase transitions. In the lower left corner
the system is in the IN/IN phase, crossing the red contour line it enters
the EX/EX phase. Upon further increase in the reservoir densities the
IN/IN phase is reached again in the upper right corner, before the
MC/MC phase arises where the densities are limited by the bulk
properties.

bounded by the boundary densities, (ρ↑
L,ρ

↓
L) and (ρ↑

res,ρ
↓
res).

Depending on the boundary conditions either the minimal or
the maximal current gives the bulk currents. The currents,
which have to be considered are the entering and the exiting
current or a mixture of both, i.e., one lane is determined by the
left while the other one is determined by the right boundary.
The exiting current can be calculated by equating Eqs. (6) and
(8) with Eq. (7). For the specific example U = 3,β↑ = β↓ =
0.3, the corresponding contour line of the current-density
relation consists of several disjoint lines; see Fig. 6 where the
red line has four parts which are denoted as 1, 2, 3, and 4. Then,
the part that includes the point (ρ↑

L,ρ
↓
L) marks the boundary

where the maximal or minimal current is selected. In the
example discussed here this boundary is given by line 2 in
Fig. 6. The extrema to be considered for the ECP are located
at the boundary of the rectangle given by (ρ↑

L,ρ
↓
L) (ρ↑

res,ρ
↓
res),

or at the extremum on the rectangle. This extremum can be
inside the rectangle or also at its boundary.

To illustrate the extremal-current principle we consider
a path where the reservoir densities are gradually increased
along the diagonal ρres = ρ

↑
res = ρ

↓
res for fixed exiting rates and

interaction strength. Even though we choose this path as an
example, our results hold for arbitrary boundary conditions
as exemplified in the following. Figure 7 displays the bulk
densities and the phase transitions that occur. For small
reservoir densities the minimal current is selected, which is
given by the left reservoirs there. Upon crossing the current
contour line (1) for the first time, the left reservoir current
is larger than the exiting current, and transport is determined
by the exiting rates. Crossing the contour line that includes
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FIG. 7. (Color online) Average bulk densities for increasing
reservoir densities ρres = ρ↑

res = ρ↓
res. The parameters are set to β↑ =

β↓ = 0.3 and U = 3; the situation corresponds to Fig. 6. The phases
introduced here are discussed in Sec. V B. Red (gray) circles denote
simulation results; black lines correspond to analytical predictions
from the ECP.

the point (ρ↑
L,ρ

↓
L) (line 2), does not give rise to a phase

transition, since now the maximum current determines the
bulk current. In this domain the exiting current is larger than
the left reservoir current. The next phase transition happens
when the current at the left boundary exceeds the exiting
current. Again, the phase transition occurs at a segment of the
red contour line (line 3). Upon a further increase, the second
maximum of the current-density relation is reached, and the
maximal-current phase is entered. For reservoir densities larger
than (ρ↑

I ,ρ
↓
I ), i.e., for the maximum bulk current, see Eq. (A6)

in the Appendix, a maximum current is attained.

B. Phases

As discussed above the system either adopts its minimal
or maximal current, depending on the boundary conditions.
These extremal currents can be either given by one boundary or
by an extremum of the current-density relation itself. Hence we
can distinguish two classes of phases in the system, boundary-
and bulk-induced phases. The first one is highly sensitive to
small changes in the boundary conditions, while in the latter
one the densities are determined by the bulk properties and do
not depend on the entering and exiting parameters.

1. Boundary-induced phases

The boundary-induced phases depend either on the enter-
ing or exiting processes, and we consequently differentiate
between IN and EX phases. In our model, we employ particle
reservoirs at the left boundary, but exiting rates at the right
one. As a consequence the left and the right boundary influence
the bulk densities in qualitatively different ways. Indeed, in
the case where both lanes are determined be the left boundary
(IN/IN phase), the bulk densities are given by the reservoirs
densities, ρ↑ = ρ

↑
res,ρ

↓ = ρ
↓
res. In contrast, if a system is in the

EX/EX phase, only the total current is fixed to the value given
by the right boundary, whereas the bulk densities also depend
on the reservoir densities at the left boundary, for ρ

↑
res <>ρ

↓
res

holds ρ↑ �
>ρ↓. Further mixed phases (IN/EX or EX/IN) may

 0

 0.25

 0.5

 0.75
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 0  0.2  0.4  0.6  0.8  1

ρ↑
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ρ

ρ↑res.

IN/IN EX/IN

FIG. 8. (Color online) Average bulk densities for different upper
reservoir densities ρ↑

res. Parameters are ρ↓
res = 0.02, β↑ = β↓ = 0.3,

U = 3.0. If both reservoir densities are small, the system is in the
IN/IN phase where both bulk densities are given by the reservoirs.
This changes for larger ρ↑

res. While the lower lane is still determined
by the left boundary, the upper lane is governed by the right boundary
(EX/IN phase).

become relevant where the current on one lane is determined
by the left boundary and the current on the other is fixed by
the exiting current.

The IN/IN and the EX/IN phase are exemplified in Fig. 8
where we show the average bulk densities depending on the
upper reservoir density ρ

↑
res. Parameters are chosen such that

a transition from the IN/IN to the EX/IN phase emerges at
a certain value of ρ

↑
res. Only in the IN/IN phase do the bulk

densities vary when changing the upper reservoir density ρ
↑
res;

in the EX/IN phase they are almost undisturbed by changes in
ρ

↑
res.

2. Bulk-induced phases

In the bulk-determined phases, the current is given by an
extremum of the current-density relation. Here we restrict the
discussion to the case where a maximum occurs (MC phase),
yet one can find parameter regions where a saddle fixes the
phase behavior [40].

In the maximum-current phase a localized domain wall
can emerge, separating a high-density regime at the left and
a low-density regime at the right; see Fig. 9. This scenario,
previously found in Ref. [13], occurs if both maxima (ρ↑

I ,ρ
↓
I )

and (ρ↑
II ,ρ

↓
II ), Eq. (A6) in the Appendix, are accessible. Each

domain along the lane then corresponds to one of the maximal
currents. In particular, the current is continuous at the domain
wall. In Fig. 9, the reservoir density at the left boundary is
larger than the density corresponding to the second maximum,
while the density at the right boundary is smaller than the den-
sity corresponding to the first maximum. Hence in the vicinity
of each boundary the density which is closer to the respective
boundary density arises. Depending on the exact values of
the boundary densities, the domain wall is located between
the left hand side and the middle of the system. Increasing
the reservoir densities the domain wall moves further to the
right. In Fig. 7, the MC/MC phase is shown for symmetric
boundary conditions. The black line denotes the analytically
obtained density corresponding to the second maximum of the
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FIG. 9. Density profile of a state exhibiting maximal current.
The parameters are ρ↑

res = ρ↓
res = 1, β↑ = β↓ = 1, U = 3.0, and L =

1000. The current remains spatially constant while the density shows
a high value at the left and a low value at the right. Both densities
correspond to maxima in the current-density relation, ρI ,ρII . An
unusual localized domain wall forms between them; see text.

current density relation. It is in excellent agreement with the
simulation results.

C. Phase diagrams

Employing the extremal-current principle, the phase di-
agrams can be characterized completely also for unequal
boundary densities.. As described above, there exist several
phases which are either determined by the boundaries or by the
bulk transport properties of the system. According to the ECP
the phase transition lines are given by equating the entering
and exiting currents or by the structure of the current-density
relation. The bulk current dominates if the maximum on the
rectangle bounded by the corners (ρ↑

res,ρ
↓
res), (ρ↑

L,ρ
↓
L) is not

given by either of these points. It is clear that a transition from
a left-reservoir or right-exiting-currents dominated phase to
a maximum-current phase can emerge only if the extremum
traverses the boundary of the rectangle considered. Further
transitions to an IN/EX and EX/IN phase are identified
using again the extremal-current principle employing con-
tour lines corresponding to the total current in the mixed
phases.

In Fig. 10 we exemplify a phase diagram depending on
unequal reservoir densities. The exiting rates are fixed to
β↑ = β↓ = 0.3 and the potential is set to U = 3, a value
where the current-density relation shows two maxima. The
parameters are identical to the ones of Figs. 6 and 7. In Fig. 10,
the stochastic simulations (red dots) are in good agreement
with the analytic calculations (black lines). Because the latter
ones were obtained employing the ECP also for unequal
reservoir densities, the strength and generality of the ECP can
be confirmed. Due to the symmetry between both lanes, the
phase diagram is symmetric along its diagonal, ρ

↑
res = ρ

↓
res.

In the lower left corner, where both reservoir densities are
small, both channels are determined by the entering current
(IN/IN phase). Increasing only one reservoir density, the
minimal current is no longer given by the entering current
on the respective lane. Hence the system reaches the EX/IN

FIG. 10. (Color online) A generic phase diagram with the
reservoir densities as control parameters. The exiting rates are fixed
to β↑ = β↓ = 0.3 and the interaction strength is set to U = 3.0.
The red (gray) dots denote simulation results of the transition lines,
while the black lines are calculated employing the ECP. Besides the
combinations of phases which are determined by entering or exiting
currents, phases which do not exist for U < ln 4 are also present.
Namely, a second IN/IN phase, which exhibits a high density, and the
MC/MC, where the maximal current determines the bulk densities,
occur.

phase (IN/EX phase). The phase-transition lines between the
IN/IN and IN/EX phase, as well as the ones between the IN/EX
and the EX/EX phase, are given by contour lines of the current
on an individual lane, Eq. (6). In the middle of the phase
diagram, both channels are determined by the exiting currents.
As mentioned above, only the total current is fixed in this
phase, in contrast to the bulk densities which also depend on
the reservoir densities at the left boundary. The dotted line
marks the region where the bulk densities on both channels
are equal. On this line the bulk densities can be calculated
employing Eq. (8). For a further increase in the reservoir
densities, the IN/IN phase arises again where the bulk currents
as well as the bulk densities are given by the left boundary.
This phase would not arise if we had chosen entering rates,
rather than particle reservoirs, at the left boundary, because
boundary densities larger than 1/2 would then not emerge. In
our case, such large densities cause currents larger than the
entering current. These dominate the system according to the
extremal-current principle. For even larger reservoir densities
the crest of the current-density relation, which marks the phase
transition from the IN/IN to the MC/MC phase, is reached,
and the bulk densities remain constant at the values where the
second maximum is located.

VI. SUMMARY AND CONCLUSION

In this paper we have examined a driven two-channel
model where the motion of particles along both channels
is coupled via a repulsive short-range interaction. The latter
causes intriguing phenomena and phases. Varying the strength
of particle obstruction, three regimes of qualitatively different

031923-8



DRIVEN TRANSPORT ON PARALLEL LANES WITH . . . PHYSICAL REVIEW E 83, 031923 (2011)

behavior evolve. First, for small coupling the system approx-
imately acts as two uncoupled lanes, i.e., the phases and
phase diagram qualitatively correspond to the ones already
known from TASEP. These results can be confirmed by
employing a simple mean-field approach or a one-site cluster
approximation. Second, for moderate interaction strength the
transport properties of the system are strongly influenced by
the obstruction between neighboring particles. This regime
emerges around a critical interaction strength, UC = ln 4 [7],
where a single maximum of the current-density relation splits
into two, separated by a saddle. Third, when the obstruction is
large, the two coupled lanes effectively behave as a single one.
In this case, we have identified a mapping from the parameters
governing entering and exiting processes in our system to
effective rates for a single-lane TASEP. This mapping then
allows us to carry over known results from TASEP, such as its
phase diagram. Hence for different strengths of the obstruc-
tion a variety of peculiar phases surface which can be
accessed by manipulating the system at the boundary only. The
boundary-sensitive phases respond gradually upon tuning the
left reservoir or the exiting rates, whereas the maximal-current
phase is robust against such changes.

In contrast to previous work [7], we explicitly investigated
the two-channel system with a broken lane symmetry. We
thereby followed the proposition in [7] that the ECP might be
generic for multichannel system. As a key result we indeed
derive a suitable generalization of the ECP to two dimensions.
We thereby approve that not the densities but the currents
govern the transitions between the minimal and the maximal
current principle, a distinction that cannot be made within
one-dimensional or symmetric situations. The accuracy with
which the system’s phase behavior can be predicted with
our two-dimensional ECP is astonishing and suggests it for
further applications. In further contrast to [7] we specifically
investigated the dependence on the potential U . For small
potentials the system’s behavior is not sensitive on whether
reservoir or rates are chosen at the boundaries. However, for
intermediate and large potentials, reservoirs or rates at the
boundaries make a difference. For example, the system does
not behave like a one-channel system for large potentials if
reservoirs are chosen instead of rates at the right boundary,
as has been done in [7]. Because we employ exiting rates
at the right boundary, we observe interesting effects such as a
strong impact of the potential U on the exiting current (Fig. 5),
and two transitions instead of one in the bulk densities upon
increasing U (Fig 3).

It would be interesting to consider also lane changes
(respectively, spin flips) of the particles as they proceed along
the channel. Such events are expected in realistic applications
such as intracellular transport, highway traffic on multiple
lanes, or hopping transport of electrons through a chain of
quantum dots. The correlations induced by frequent lane
changes [32,46], ignoring mutual obstruction, are accurately
described by a one-site cluster approximation similar to the one
we employed. Yet, for rare lane changes a simple mean-field
approximation suffices to describe the arising localized domain
walls [12]. The combination of obstruction, lane switching,
and possibly also defects constitutes a promising route to
discover novel and unexpected collective phenomena in driven
transport.

In conclusion, we have shown that the ECP can be
generalized to higher dimensions to serve as an appropriate
tool for the investigation of driven multichannel systems. We
therefore think that extremal-current principle is a promising
starting point to achieve a deeper understanding of complex
transport phenomena.
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APPENDIX: CURRENT-DENSITY RELATION

In this Appendix, we derive an analytic description for the
current-density relation within a one-site cluster approxima-
tion. The individual currents onto a site i can be obtained be
evaluating the particle fluxes onto this site,

j
↑
i = 〈e−U (n↑

i−1 − n
↑
i−1n

↓
i−1)(n↑

i − n
↑
i n

↓
i )〉

+ 〈(n↑
i−1 − n

↑
i−1n

↓
i−1)(1 − n

↑
i − n

↓
i + n

↑
i n

↓
i )〉

+ 〈n↑
i−1n

↓
i−1(1 − n

↑
i )〉, (A1)

and similarly for j
↓
i . This expression is evaluated employing

the one-site cluster approximation discussed in Sec. IV A.
The essence of the approach consists of considering all
four possible states of the two opposing sites, whereas all
correlations between neighboring sites are factorized. Thus a
complete description is achieved in terms the mean double-
occupation density κi = 〈n↑

i n
↓
i 〉 besides the average densities

ρ
↑
i = 〈n↑

i 〉 and ρ↓ = 〈n↓
i 〉. Then the closure relation for the

currents is derived,

j
↑
i = e−U (ρ↑

i−1 − κi−1)(ρ↑
i − κi)

+ (ρ↑
i−1 − κi−1)(1 − ρ

↑
i − ρ

↓
i + κi)

+ κi−1(1 − ρ
↑
i ). (A2)

Similar to Eq. (A1), the time evolution for the double-
occupation density κi involves averages of products of occupa-
tion variables ni . Within the same truncation of the hierarchy,
one finds

∂tκi = e−U (ρ↑
i−1 − κi−1)(ρ↓

i − κi)

+ e−U (ρ↓
i−1 − κi−1)(ρ↑

i − κi)

+ κi−1(ρ↑
i + ρ

↓
i − 2κi)

− κi(2 − ρ
↑
i+1 − ρ

↓
i+1). (A3)

In the steady state and for spatially homogeneous density
profiles, the double occupation density κ obeys a quadratic
equation with solution

κ = λρ − 1 +
√

(λρ − 1)2 + 4λ(1 − λ)ρ↑ρ↓

2λ
. (A4)

Here, λ = 1 − e−U corresponds to the inverse dwell time in
the obstructed case and ρ = ρ↑ + ρ↓ to the total density.
Combining this result with the closure relation for the current,
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Eq. (A2), the closed expression for the current-density relation
follows,

j↑ = ρ↑(1 − ρ↑ − ρ↓) + κ,
(A5)

j↓ = ρ↓(1 − ρ↑ − ρ↓) + κ.

The total current J = j↑ + j↓ displays a single maximum
for small interactions U located at ρ↑ = ρ↓ = 1/2. This

maximum is replaced a saddle for strong coupling and two
maxima of equal height appear on the diagonal. These new
maxima are located at

ρ
↑
I,II = ρ

↓
I,II = 1

2
±

√
1 − 5e−U + 4e−2U

4(1 − e−U )
. (A6)

These solutions are only real for potentials larger than the
critical value, UC = ln 4.
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M. Schreckenberg, and D. E. Wolf (Springer, New York, 2006),
pp. 205–202.

[7] V. Popkov and I. Peschel, Phys. Rev. E 64, 026126 (2001).
[8] D. Helbing, Rev. Mod. Phys. 73, 1067 (2001).
[9] D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep.

329, 199 (2000).
[10] B. Schmittmann, J. Krometics, and R. K. P. Zia, Europhys. Lett.

70, 299 (2005).
[11] S. Katz, J. L. Lebowitz, and H. Spohn, Phys. Rev. B 28, 1655

(1983).
[12] T. Reichenbach, T. Franosch, and E. Frey, Phys. Rev. Lett. 97,

050603 (2006).
[13] J. Krug, Phys. Rev. Lett. 67, 1882 (1991).
[14] C. MacDonald, J. Gibbs, and A. Pipkin, Biopolymers 6, 1 (1968).
[15] B. Derrida and J. L. Lebowitz, Phys. Rev. Lett. 80, 209 (1998).
[16] B. Derrida, M. Evans, V. Hakim, and V. Paquier, J. Phys. A 26,

1493 (1993).
[17] A. Vilfan, E. Frey, F. Schwabl, M. Thormählen, Y. Song, and

E. Mandelkow, J. Mol. Biol. 312, 1011 (2001).
[18] A. Parmeggiani, T. Franosch, and E. Frey, Phys. Rev. Lett. 90,

086601 (2003).
[19] S. Klumpp and R. Lipowsky, J. Stat. Phys. 113, 233 (2003).
[20] K. Nishinari, Y. Okada, A. Schadschneider, and D. Chowdhury,

Phys. Rev. Lett. 95, 118101 (2005).
[21] P. Greulich, A. Garai, K. Nishinari, A. Schadschneider, and

D. Chowdhury, Phys. Rev. E 75, 041905 (2007).
[22] A. Parmeggiani, T. Franosch, and E. Frey, Phys. Rev. E 70,

046101 (2004).

[23] P. Pierobon, E. Frey, and T. Franosch, Phys. Rev. E 74, 031920
(2006).

[24] G. Tripathy and M. Barma, Phys. Rev. Lett. 78, 3039 (1997).
[25] P. Pierobon, M. Mobilia, R. Kouyos, and E. Frey, Phys. Rev. E

74, 031906 (2006).
[26] P. Greulich and A. Schadschneider, J. Stat. Mech. (2008)

P04009.
[27] C. Kural, H. Kim, S. Syed, G. Goshima, V. I. Gelfand, and P. R.

Selvin, Science 308, 1469 (2005).
[28] M. J. I. Müller, S. Klumpp, and R. Lipowsky, Proc. Natl. Acad.

Sci. USA 105, 4609 (2008).
[29] W. Knospe, L. Santen, A. Schadschneider, and M. Schrecken-

berg, J. Phys. A 35, 3369 (2002).
[30] T. Reichenbach, E. Frey, and T. Franosch, New J. Phys. 9, 159

(2007).
[31] T. Reichenbach, T. Franosch, and E. Frey, Eur. Phys. J. E 27, 47

(2008).
[32] E. Pronina and A. B. Kolomeisky, J. Phys. A 37, 9907 (2004).
[33] R. Jiang, M.-B. Hu, Y.-H. Wu, and Q.-S. Wu, Phys. Rev. E 77,

041128 (2008).
[34] T. Mitsudo and H. Hayakawa, J. Phys. A 38, 3087 (2005).
[35] R. Juhasz, Phys. Rev. E 76, 021117 (2007).
[36] D. Chowdhury, A. Garai, and J.-S. Wang, Phys. Rev. E 77,

050902 (2008).
[37] K. Tsekouras and A. B. Kolomeisky, J. Phys. A 41, 465001

(2008).
[38] E. Pronina and A. B. Kolomeisky, J. Phys. A 40, 2275 (2007).
[39] R. Hanson, L. Kouwenhoven, J. Petta, S. Tarucha, and

L. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).
[40] A. Melbinger, Diploma thesis, Ludwig-Maximilians-Universität

München, 2007.
[41] D. T. Gillespie, J. Comput. Phys. 22, 403 (1976).
[42] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
[43] D. ben-Avraham and J. Köhler, Phys. Rev. A 45, 8358
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