214 research outputs found

    Searches for New Physics at CMS

    Get PDF
    The first searches for New Physics with the CMS detector at the LHC are presented. The discussed analyses are based on the data sample recorded in 2010 at a centre-of-mass energy of 7TeV, which corresponds to an integrated luminosity of about 35 pb−1. Searches for excited vector bosons, leptoquarks, extra dimensions as well as for supersymmetry in different final states are presented. No significant deviations from Standard Model expectations have been observed and thus limits on the parameter space of different New Physics scenarios are derived

    Fit to Moments of Inclusive B->Xc lv and B-> Xs gamma Decay Distributions using Heavy Quark Expansions in the Kinetic Scheme

    Full text link
    We present a fit to measured moments of inclusive distributions in B->Xc lv and B-> Xs gamma decays to extract values for the CKM matrix element |Vcb|, the b- and c-quark masses, and higher order parameters that appear in the Heavy Quark Expansion. The fit is carried out using theoretical calculations in the kinetic scheme and includes moment measurements of the Babar, Belle, CDF, CLEO and DELPHI collaborations for which correlation matrices have been published. We find |Vcb| = (41.96 +- 0.23(exp) +- 0.35(HQE) +- 0.59(Gamma_SL)) 10^-3 and m_b = 4.590 +- 0.025(exp) +- 0.30(HQE) GeV where errors are experimental and theoretical respectively. We also derive values for the heavy quark distribution function parameters m_b and \mu_\pi^2 in different theoretical schemes that can be used as input for the determination of |Vub|.Comment: 13 pages, 6 figures. v3: Fig 1+2 show absolute values for moments and fit rather than the difference. Updated some references. v2: Updated to include Belle photon moments and PDG 2005 lifetime. Included extrapolation factors for the BR(B->Xs gamma) to 1.6 Gev based on the HQE parameters from the fit and added an updated OPE expression for |Vub

    Frequentist Analysis of the Parameter Space of Minimal Supergravity

    Get PDF
    We make a frequentist analysis of the parameter space of minimal supergravity (mSUGRA), in which, as well as the gaugino and scalar soft supersymmetry-breaking parameters being universal, there is a specific relation between the trilinear, bilinear and scalar supersymmetry-breaking parameters, A_0 = B_0 + m_0, and the gravitino mass is fixed by m_{3/2} = m_0. We also consider a more general model, in which the gravitino mass constraint is relaxed (the VCMSSM). We combine in the global likelihood function the experimental constraints from low-energy electroweak precision data, the anomalous magnetic moment of the muon, the lightest Higgs boson mass M_h, B physics and the astrophysical cold dark matter density, assuming that the lightest supersymmetric particle (LSP) is a neutralino. In the VCMSSM, we find a preference for values of m_{1/2} and m_0 similar to those found previously in frequentist analyses of the constrained MSSM (CMSSM) and a model with common non-universal Higgs masses (NUHM1). On the other hand, in mSUGRA we find two preferred regions: one with larger values of both m_{1/2} and m_0 than in the VCMSSM, and one with large m_0 but small m_{1/2}. We compare the probabilities of the frequentist fits in mSUGRA, the VCMSSM, the CMSSM and the NUHM1: the probability that mSUGRA is consistent with the present data is significantly less than in the other models. We also discuss the mSUGRA and VCMSSM predictions for sparticle masses and other observables, identifying potential signatures at the LHC and elsewhere.Comment: 18 pages 27 figure

    RG-improved single-particle inclusive cross sections and forward-backward asymmetry in ttˉt\bar t production at hadron colliders

    Full text link
    We use techniques from soft-collinear effective theory (SCET) to derive renormalization-group improved predictions for single-particle inclusive (1PI) observables in top-quark pair production at hadron colliders. In particular, we study the top-quark transverse-momentum and rapidity distributions, the forward-backward asymmetry at the Tevatron, and the total cross section at NLO+NNLL order in resummed perturbation theory and at approximate NNLO in fixed order. We also perform a detailed analysis of power corrections to the leading terms in the threshold expansion of the partonic hard-scattering kernels. We conclude that, although the threshold expansion in 1PI kinematics is susceptible to numerically significant power corrections, its predictions for the total cross section are in good agreement with those obtained by integrating the top-pair invariant-mass distribution in pair invariant-mass kinematics, as long as a certain set of subleading terms appearing naturally within the SCET formalism is included.Comment: 55 pages, 14 figures, 6 table

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table

    The 2009 World Average of αs\alpha_s

    Get PDF
    Measurements of αs\alpha_s, the coupling strength of the Strong Interaction between quarks and gluons, are summarised and an updated value of the world average of αs(MZ)\alpha_s (M_Z) is derived. Building up on previous reviews, special emphasis is laid on the most recent determinations of αs\alpha_s. These are obtained from τ\tau-decays, from global fits of electroweak precision data and from measurements of the proton structure function \F_2, which are based on perturbative QCD calculations up to O(αs4)O(\alpha_s^4); from hadronic event shapes and jet production in \epem annihilation, based on O(αs3)O(\alpha_s^3) QCD; from jet production in deep inelastic scattering and from ΄\Upsilon decays, based on O(αs2)O(\alpha_s^2) QCD; and from heavy quarkonia based on unquenched QCD lattice calculations. Applying pragmatic methods to deal with possibly underestimated errors and/or unknown correlations, the world average value of αs(MZ)\alpha_s (M_Z) results in αs(MZ)=0.1184±0.0007\alpha_s (M_Z) = 0.1184 \pm 0.0007. The measured values of αs(Q)\alpha_s (Q), covering energy scales from Q \equiv \mtau = 1.78 GeV to 209 GeV, exactly follow the energy dependence predicted by QCD and therefore significantly test the concept af Asymptotic Freedom.Comment: 14 pages, 7 figure
    • 

    corecore