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Abstract Measurements of αs, the coupling strength of
the Strong Interaction between quarks and gluons, are
summarised and an updated value of the world average
of αs(MZ0) is derived. Special emphasis is laid on the
most recent determinations of αs. These are obtained from
τ -decays, from global fits of electroweak precision data and
from measurements of the proton structure function F2,
which are based on perturbative QCD calculations up to
O(α4

s ); from hadronic event shapes and jet production in

e+e− annihilation, based on O(α3
s ) QCD; from jet produc-

tion in deep inelastic scattering and from Υ decays, based
on O(α2

s ) QCD; and from heavy quarkonia based on un-
quenched QCD lattice calculations. A pragmatic method is
chosen to obtain the world average and an estimate of its
overall uncertainty, resulting in

αs(MZ0) = 0.1184 ± 0.0007.

The measured values of αs(Q
2), covering energy scales

from Q ≡ Mτ = 1.78 GeV to 209 GeV, exactly follow the
energy dependence predicted by QCD and therefore signifi-
cantly test the concept of Asymptotic Freedom.

PACS 12.38.Qk
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1 Introduction

Quantum Chromodynamics (QCD) is the gauge field the-
ory of the Strong Interaction [1–4]. QCD describes the in-
teraction of quarks through the exchange of massless vector
gauge bosons, the gluons, using similar concepts as in Quan-
tum Electrodynamics, QED. The underlying gauge structure
is a SU(3) rather than the simple U(1) of QED, implying
many analogies, but also basic new features. The carriers of
the strong force are 8 massless gluons in analogy to the pho-
ton for the electromagnetic force. An important new aspect
is that the gluons, carrying a new quantum number called
colour, can interact with each other.

As a consequence of the gluon self-coupling, QCD im-
plies that the coupling strength αs, the analogue to the
fine structure constant α in QED, becomes large at large
distances or—equivalently—at low momentum transfers.1

Therefore QCD provides a qualitative reason for the obser-
vation that quarks do not appear as free particles but only
exist as bound states of quarks, forming hadrons like pro-
tons, neutrons and pions. Hadrons appear to be neutral w.r.t.
the strong quantum charge.

The quark statistics of all known hadrons, their produc-
tion cross sections and decay widths imply that there are

1“Large” distances �s correspond to �s > 1 fm, “low” momentum
transfers to Q < 1 GeV/c.
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three different states of the strong charge. Quarks carry
one out of three different colour charges, while hadrons
are colourless bound states of 3 quarks or 3 antiquarks
(“baryons”), or of a quark and an anti-quark (“mesons”).
Gluons, in contrast to the electrically neutral photons, carry
two colour charges.

QCD does not predict the actual value of αs. For large
momentum transfers Q, however, it determines the func-
tional form of the energy dependence of αs. While an in-
creasingly large coupling at small energy scales leads to the
“confinement” of quarks and gluons inside hadrons, the cou-
pling becomes small at high-energy or short-distance reac-
tions; quarks and gluons are said to be “asymptotically free”,
i.e. αs → 0 for momentum transfers Q → ∞.

The value of αs, at a given energy or momentum trans-
fer scale2 Q, must be obtained from experiment. Determin-
ing αs at a specific energy scale Q is therefore a funda-
mental measurement, to be compared with measurements of
the electromagnetic coupling α, of the elementary electric
charge, or of the gravitational constant. Testing QCD, how-
ever, requires the measurement of αs over ranges of energy
scales: one measurement fixes the free parameter, while the
others test the specific QCD prediction of confinement and
of asymptotic freedom.

In the regime of αs(Q
2) � 1, methods of perturbation

theory are applied to predict cross sections and distribu-
tions of physical processes implying quarks and gluons in
the initial, intermediate or final state. The non-perturbative
region where αs approaches or exceeds values of O(1) usu-
ally leads to methodological problems in the interpretation
of measurements. Theoretical uncertainties therefore arise
from the non-perturbative regime and from unknown higher-
order terms of the perturbative expansion. These uncertain-
ties, in most cases, can only be dealt with in rather pragmatic
ways, and—with few exceptions—they dominate the errors
of experimental determinations of αs.

In this review the current status of measurements of αs

is summarised. Theoretical basics of QCD and of the pre-
dicted energy dependence of αs are given in Sect. 2. Actual
measurements of αs are presented in Sect. 3. A global sum-
mary of these results and a determination of the world av-
erage value of αs(MZ0) are presented in Sect. 4. Section 5
concludes and gives an outlook to future requirements and
developments.

2 Theoretical basics

The concepts of Quantum Chromodynamics are presented
in a variety of text books and articles, as e.g. [5–10], so that

2Here and in the following, the speed of light and Planck’s constant
are set to unity, c = � = 1, such that energies, momenta and masses are
given in units of GeV.

in the following, only a brief summary of the basics of per-
turbative QCD and the running coupling parameter αs will
be given.

2.1 Energy dependence of αs

With the value of αs known at a specific energy scale Q2,
its energy dependence is given by the renormalisation group
equation

Q2 ∂αs(Q
2)

∂Q2
= β

(
αs

(
Q2)). (1)

The perturbative expansion of the β function is calculated to
complete 4-loop approximation [11, 12]:

β
(
αs

(
Q2)) = −β0α

2
s

(
Q2) − β1α

3
s

(
Q2)

− β2α
4
s

(
Q2) − β3α

5
s

(
Q2) + O

(
α6

s

)
, (2)

where

β0 = 33 − 2Nf

12π
,

β1 = 153 − 19Nf

24π2
,

(3)

β2 = 77139 − 15099Nf + 325N2
f

3456π3
,

β3 ≈ 29243 − 6946.3Nf + 405.089N2
f + 1.49931N3

f

256π4

and Nf is the number of active quark flavours at the en-
ergy scale Q. The numerical constants in (3) are functions
of the group constants CA = N and CF = (N2 − 1)/2N , for
theories exhibiting SU(N) symmetry. For QCD and SU(3),
CA = 3 and CF = 4/3.

A solution of equation 1 in 1-loop approximation, i.e. ne-
glecting β1 and higher-order terms, is

αs
(
Q2) = αs(μ

2)

1 + αs(μ2)β0 ln Q2

μ2

, (4)

where μ2 appears as an integration constant. Apart from giv-
ing a relation between the values of αs at two different en-
ergy scales, μ2 at which αs is assumed to be known, and

Q2 being another scale for which αs is being predicted,
(4) also demonstrates the property of asymptotic freedom,
i.e. αs → 0 for Q2 → ∞, provided that Nf < 17.

Likewise, (4) indicates that αs(Q
2) grows to large val-

ues and diverges to infinity at small Q2: for instance, with
αs(μ

2 ≡ M2
Z0) = 0.12 and for typical values of Nf =

2, . . . ,5, αs(Q
2) exceeds unity for Q ≤ O(100 MeV–

1 GeV). Clearly, this is the region where perturbative expan-
sions in αs are not meaningful anymore. Therefore energy
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scales below the order of 1 GeV are regarded as the non-
perturbative region where confinement sets in, and where
(1) and (4) cannot be applied.

Including β1 and higher-order terms, similar but more
complicated relations for αs(Q

2), as a function of αs(μ
2)

and of ln Q2

μ2 as in (4), emerge. They can be solved numeri-

cally, such that for a given value of αs(μ
2), choosing a suit-

able reference scale like the mass of the Z0 boson, μ = MZ0 ,
αs(Q

2) can be accurately determined at any energy scale
Q2 ≥ 1 GeV2.

With

Λ2 = μ2

e1/(β0αs(μ2))
,

a dimensional parameter Λ is introduced such that (4) trans-
forms into

αs
(
Q2) = 1

β0 ln(Q2/Λ2)
. (5)

Hence, the Λ parameter is technically identical to the energy
scale Q where αs(Q

2) diverges to infinity. To give a numeri-
cal example, Λ ≈ 0.1 GeV for αs(MZ0 ≡ 91.2 GeV) = 0.12
and Nf = 5.

In complete 4-loop approximation and using the Λ-
parametrisation in the MS renormalisation scheme (see
Sect. 2.4), the running coupling is given [13] by

αs
(
Q2) = 1

β0L
− 1

β3
0L2

β1 lnL

+ 1

β3
0L3

(
β2

1

β2
0

(
ln2 L − lnL − 1

) + β2

β0

)

+ 1

β4
0L4

(
β3

1

β3
0

(
− ln3 L + 5

2
ln2 L + 2 lnL − 1

2

))

− 1

β4
0L4

(
3
β1β2

β2
0

lnL + β3

2β0

)
, (6)

where L = ln(Q2/Λ2
MS

). The first line of (6) includes the 1-

and the 2-loop coefficients, the second line is the 3-loop and
the third and the fourth lines denote the 4-loop correction,
respectively.

The functional form of αs(Q), in 4-loop approximation
and for 4 different values of ΛMS, is displayed in Fig. 1.
The slope and dependence on the actual value of ΛMS is es-

pecially pronounced at small Q2, while at large Q2 both the
energy dependence and the dependence on ΛMS becomes
increasingly feeble.

The relative size of higher-order loop corrections and the
degree of convergence of the perturbative expansion of αs is
demonstrated in Fig. 2, where the fractional difference in the
energy dependence of αs, (α

(4-loop)
s − α

(n-loop)
s )/α

(4-loop)
s ,

Fig. 1 The running of αs(Q), according to (6), in 4-loop approxima-
tion, for different values of ΛMS

for n = 1, 2 and 3, is presented. The values of ΛMS were
chosen such that αs(MZ0) = 0.1184 in each order, i.e.,
ΛMS = 90 MeV (1-loop), ΛMS = 231 MeV (2-loop), and
ΛMS = 213 MeV (3- and 4-loop). Only the 1-loop approxi-
mation shows sizeable differences of up to several per cent,
in the energy and parameter range chosen, while the 2- and
3-loop approximations already reproduce the energy depen-
dence of the 4-loop prediction quite accurately.

The parametrisation of the running coupling αs(Q
2) with

Λ instead of αs(μ
2) has become a common standard, see

e.g. [9]. It will also be adopted here.

2.2 Quark threshold matching

Physical observables R, when expressed as a function of αs,
must be continuous when crossing a quark threshold where
Nf changes by one unit. This implies that Λ actually de-
pends on the number of active quark flavours. Λ will there-

fore be labelled Λ
(Nf )

MS
to indicate these peculiarities. Also

the slope of the energy dependence and, in approximations
higher than 2-loop, the value of αs change at the quark
flavour thresholds:

Construction of theoretical predictions which consis-
tently match at a quark flavour threshold leads to match-
ing conditions for the values of αs above and below that
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Fig. 2 Fractional difference between the 4-loop and the 1-, 2- and
3-loop presentations of αs(Q), for Nf = 5 and ΛMS chosen such that,
in each order, αs(MZ0 ) = 0.1184

threshold [14]. In leading and in next-to-leading order, the

matching condition is α
(Nf −1)
s = α

Nf
s . In higher orders,

however, nontrivial matching conditions apply [13–15]. For-
mally these are of order (n − 1), if the energy evolution of
αs is performed in nth order (or n loops).

The matching scale μ(Nf ) can be chosen in terms of the
(running) mass mq(μ), or of the constant, so-called pole
mass Mq . For both cases, the relevant matching conditions
are given in [13]. These expressions have a particularly sim-
ple form for the choice3 μ(Nf ) = mq(mq) or μ(Nf ) = Mq .
In this review, the latter choice will be used to perform 3-
loop matching at the heavy quark pole masses, in which

case the matching condition reads, with a = α
(Nf )
s /π and

a′ = α
(Nf −1)
s /π :

a′

a
= 1 + C2a

2 + C3a
3, (7)

where C2 = −0.291667 and C3 = −5.32389 + (Nf − 1) ·
0.26247 [13].

3The results of reference [13] are also valid for other relations between
μ(Nf ) and mq or Mq , as e.g. μ(Nf ) = 2Mq . For 3-loop matching, dif-
ferences due to the freedom of this choice are negligible.

The fractional difference of the 4-loop prediction for the

running αs, using (6) with Λ
(Nf =5)

MS
= 213 MeV and 3-

loop matching at the charm- and bottom-quark pole masses,

μ
(Nf =4)
c = Mc = 1.5 GeV and μ

(Nf =5)

b = Mb = 4.7 GeV,
and the 4-loop prediction without applying matching and
with Nf = 5 throughout are illustrated in Fig. 3. Small dis-
continuities at the quark thresholds can be seen, such that

α
(Nf −1)
s < α

(Nf )
s by about 2 per mille at the bottom- and

about 1 per cent at the charm-quark threshold. The cor-

responding values of ΛMS are Λ
(Nf =4)

MS
= 296 MeV and

Λ
(Nf =3)

MS
= 338 MeV. In addition to the discontinuities, the

matched calculation shows a steeper rise towards smaller en-

ergies because of the larger values of Λ
(Nf =4)

MS
and Λ

(Nf =3)

MS
.

Note that the step function of αs is not an effect which can
be measured; the steps are artifacts of the truncated pertur-
bation theory and the requirement that predictions for ob-
servables at energy scales around the matching point must
be consistent and independent of the two possible choices
of (neighbouring) values of Nf .

Fig. 3 The fractional difference between 4-loop running of αs(Q)

with 3-loop quark threshold matching according to (6) and (7), with

Λ
(Nf =5)

MS
= 213 MeV and charm- and bottom-quark thresholds at the

pole masses, μ
(Nf =4)
c ≡ Mc = 1.5 GeV and μ

(Nf =5)

b ≡ Mb = 4.7 GeV
(full line), and the unmatched 4-loop result (dashed line)
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2.3 Perturbative predictions of physical quantities

In perturbative QCD, physical quantities R are usually given
by a power series in αs(μ

2), like

R
(
Q2) = Pl

∑

n

Rnα
n
s

= Pl

(
R0 + R1αs

(
μ2)

+ R2
(
Q2/μ2)α2

s

(
μ2) + · · ·), (8)

where Rn are the nth order coefficients of the perturbation
series and PlR0 denotes the lowest-order value of R. R1

is the leading-order (LO) or—equivalently—the first-order
coefficient of the expansion in αs, R2 is called the next-to-
leading order (NLO), R3 is the next-to-next-to-leading order
(NNLO) and R4 the N3LO coefficient.4

QCD calculations in NLO perturbation theory are avail-
able for many observables R in high-energy particle reac-
tions like hadronic event shapes, jet production rates, scal-
ing violations of structure functions. Calculations includ-
ing the complete NNLO are available for some totally in-
clusive quantities, like the total hadronic cross section in
e+e− → hadrons, moments and sum rules of structure func-
tions in deep inelastic scattering processes, the hadronic de-
cay widths of the Z0 boson and of the τ lepton. More re-
cently, NNLO predictions were provided for exclusive quan-
tities like hadronic event shape distributions and differential
jet production rates in e+e− annihilation [16, 17], and N3LO
predictions for the hadronic width of the Z0 boson and the τ

lepton [18] became available.
A further approach to calculating higher-order correc-

tions is based on the resummation of logarithms which
arise from soft and collinear singularities in gluon emis-
sion [19]. Application of resummation techniques and ap-
propriate matching with fixed-order calculations are further
detailed e.g. in [10].

2.4 Renormalisation

In quantum field theories like QCD and QED, physical
quantities R can be expressed by a perturbation series in
powers of the coupling parameter αs or α, respectively. If
these couplings are sufficiently small, i.e. if αs � 1, the se-
ries may converge sufficiently quickly such that it provides
a realistic prediction of R even if only a limited number of
perturbative orders will be known.

In QCD, examples of such quantities are cross sections,
decay rates, jet production rates or hadronic event shapes.

4The notions of (next-to-) leading order and their mapping to nth order
in αs are not consistently treated in the literature. For instance, N3LO
usually corresponds to O(α4

s ) in e+e− annihilation [18], the notion
N3LO is used for O(α3

s ) in deep inelastic scattering, see e.g. [61].

Consider R being dimensionless and depending on αs and
on a single energy scale Q. When calculating R as a pertur-
bation series in αs, ultraviolet divergencies occur. These di-
vergencies are removed by the “renormalisation” of a small
set of physical parameters. Fixing these parameters at a
given scale and absorbing this way the ultraviolet divergen-
cies, introduces a second but artificial momentum or energy
scale μ. As a consequence of this procedure, R and αs be-
come functions of the renormalisation scale μ. Since R is
dimensionless, we assume that it only depends on the ratio
Q2/μ2 and on the renormalised coupling αs(μ

2):

R ≡ R
(
Q2/μ2, αs

); αs ≡ αs
(
μ2).

Because the choice of μ is arbitrary, however, the actual
value of the experimental observable R cannot depend on μ,
so that

μ2 d

dμ2
R

(
Q2/μ2, αs

)

=
(

μ2 ∂

∂μ2
+ μ2 ∂αs

∂μ2

∂

∂αs

)
R =! 0, (9)

where the derivative is multiplied with μ2 in order to keep
the expression dimensionless. Equation (9) implies that any
explicit dependence of R on μ must be cancelled by an ap-
propriate μ-dependence of αs to all orders. It would there-
fore be natural to identify the renormalisation scale with the
physical energy scale of the process, μ2 = Q2, eliminat-
ing the uncomfortable presence of a second and unspecified
scale. In this case, αs transforms to the “running coupling
constant” αs(Q

2), and the energy dependence of R enters
only through the energy dependence of αs(Q

2).
The principal independence of a physical observable R

from the choice of the renormalisation scale μ was ex-
pressed in (9). Replacing αs by αs(μ

2), using (1), and insert-
ing the perturbative expansion of R (see (8)) into (9) results,
for processes with constant Pl , in

0 = μ2 ∂R0

∂μ2
+ αs

(
μ2)μ2 ∂R1

∂μ2
+ α2

s

(
μ2)

[
μ2 ∂R2

∂μ2
− R1β0

]

+ α3
s

(
μ2)

[
μ2 ∂R3

∂μ2
− [R1β1 + 2R2β0]

]

+ O
(
α4

s

)
. (10)

Solving this relation requires that the coefficients of αn
s (μ2)

vanish for each order n. With an appropriate choice of inte-
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gration limits one thus obtains

R0 = const.,

R1 = const.,

R2

(
Q2

μ2

)
= R2(1) − β0R1 ln

Q2

μ2
,

R3

(
Q2

μ2

)
= R3(1) − [

2R2(1)β0 + R1β1
]

ln
Q2

μ2

+ R1β
2
0 ln2 Q2

μ2

(11)

as a solution of (10).
Invariance of the complete perturbation series against the

choice of the renormalisation scale μ2 therefore implies that
the coefficients Rn, except R0 and R1, explicitly depend
on μ2. In infinite order, the renormalisation scale depen-
dence of αs and of the coefficients Rn cancel; in any finite
(truncated) order, however, the cancellation is not perfect,
such that all realistic perturbative QCD predictions include
a remaining explicit dependence on the choice of the renor-
malisation scale.

The scale dependence is most pronounced in leading
order QCD because R1 does not explicitly depend on μ

and thus, there is no cancellation of the (logarithmic) scale
dependence of αs(μ

2) at all. Only in next-to-leading and
higher orders, the scale dependence of the coefficients Rn,
for n ≥ 2, partly cancels that of αs(μ

2). In general, the de-
gree of cancellation improves with the inclusion of higher
orders in the perturbation series of R.

Renormalisation scale dependence is often used to test
and specify uncertainties of theoretical calculations for
physical observables. In most studies, the central value of
αs(μ

2) is determined or taken for μ equalling the typi-
cal energy of the underlying scattering reaction, like e.g.
μ2 = E2

cm in e+e− annihilation. Changes of the result when
varying this definition of μ within “reasonable ranges” are
taken as systematic higher-order uncertainties.

There are several proposals of how to optimise or fix the
renormalisation scale; see e.g. [20–23]. Unfortunately, there
is no common agreement of how to optimise the choice
of scales or how to define the size of the corresponding
uncertainties. This unfortunate situation should be kept in
mind when comparing and summarising results from differ-
ent analyses.

In next-to-leading order, variation of the renormalisation
scale is sufficient to assess and include theoretical uncertain-
ties due to the chosen renormalisation scheme and the lim-
ited (truncated) perturbation series. In NNLO and higher,
however, both the renormalisation scale and the renormal-
isation scheme should be varied for a complete assess-
ment. While it has become customary to include renormal-
isation scale variations when applying theoretical predic-

tions, changes of the renormalisation scheme are rarely ex-
plored. Instead, the so-called “modified minimal subtrac-
tion scheme” (MS) [24] is commonly used in most analyses,
which is also the standard choice in this review.

2.5 Non-perturbative methods

At large distances or low momentum transfers, αs becomes
large and application of perturbation theory becomes in-
appropriate. Non-perturbative methods have therefore been
developed to quantify strong interaction processes at low-
energy scales of typically Q2 < 1 GeV2, such as the frag-
mentation of quarks and gluons into hadrons (“hadronisa-
tion”) and the masses and mass splittings of mesons.

Hadronisation models are used in Monte Carlo ap-
proaches to describe the transition of quarks and gluons into
hadrons. They are based on QCD-inspired mechanisms like
the “string fragmentation” [25, 26] or “cluster fragmenta-
tion” [27, 28], and are usually implemented, together with
perturbative QCD shower and/or (N)LO QCD generators,
in models describing complete hadronic final states in high-
energy particle collisions. Those models contain a number
of free parameters which must be adjusted in order to re-
produce the experimental data well. They are indispensable
tools not only for detailed QCD studies of high-energy colli-
sion reactions, but are also important to assess the resolution
and acceptance of large particle detector systems.

Power corrections are an analytic approach to approx-
imate non-perturbative hadronisation effects by means of
perturbative methods, introducing a universal, non-pertur-
bative parameter

α0(μI ) = 1

μI

∫ μI

0
dk αs(k)

to parametrise the unknown behaviour of αs(Q) below a cer-
tain infrared matching scale μI [29–34]. Power corrections
are regarded as an alternative approach to describe hadroni-
sation effects on event shape distributions, instead of using
phenomenological hadronisation models.

Lattice Gauge Theory is one of the most developed non-
perturbative methods (see e.g. [35]) and is used to calculate,
for instance, hadron masses, mass splittings and QCD ma-
trix elements. In Lattice QCD, field operators are applied
on a discrete, 4-dimensional Euclidean space-time of hy-
percubes with side length a. Finite size lattice and spac-
ing effects are studied by using increased lattice sizes and
decreased lattice spacing a, hoping to eventually approach
the continuum limit. With ever increasing computing power
and refined Monte Carlo methods, these calculations sig-
nificantly matured over time and recently provided predic-
tions of the proton (and other hadron) masses to better than
2% [36], and determinations of αs from quarkonia mass
splittings with a precision of better than 1% [37].
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3 Measurements of αs

Since almost 30 years, determinations of αs continue to
be at the forefront of experimental studies and tests of
QCD. Increasing precision of QCD predictions and meth-
ods, improved understanding and parametrisation of non-
perturbative effects, increased data quality and statistics and
the availability of data over large ranges of energy and from
a large variety of processes have led to an ever increasing
precision and depth of these studies. The development of αs

determinations was documented and summarised in a num-
ber of summary articles, see e.g. [9, 10, 38, 39]. Since about
the year 2000, the precision of αs determinations and the
multitude of results from various processes and ranges of
energies provided experimental proof [10, 39] of the con-
cept of asymptotic freedom.

This review aims at an update of the review from 2006
[39] which yielded a world average value of αs(MZ0) =
0.1189 ± 0.0010. Here, special emphasis will be laid on the
most recent results which are based on further improved the-
oretical predictions and/or experimental precision:

– perturbative QCD predictions in complete O(α4
s ) (N3LO)

for the hadronic widths of the Z0 boson and the τ lepton
are now available, improving further the completeness of
the perturbative series and providing increased control of
remaining theoretical uncertainties;

– improved lattice QCD simulations with vacuum polari-
sation from u, d and s quarks, updating previous deter-
minations of αs and quoting overall uncertainties of less
than 1%;

– an improved extraction of αs from radiative decays of the
Υ (1s);

– a combined analysis of non-singlet structure functions
from deep inelastic scattering data, based on QCD pre-
dictions complete to O(α3

s ) (N3LO);
– a combined analysis of inclusive jet cross section mea-

surements in neutral current deep inelastic scattering at
high Q2;

– determinations of αs from hadronic event shapes and
jet rates in e+e− annihilation final states, an important
and (experimentally) very precise environment, based on
the new and long awaited QCD predictions in complete
NNLO QCD.

These recent results are superior to and thus supersede
a large number of αs determinations published before 2006
and summarised in [39].

3.1 αs from τ -lepton decays

Determination of αs from τ lepton decays is one of the
most actively studied fields to measure this basic quantity.
The small effective energy scale, Q = Mτ = 1.78 GeV,

small non-perturbative contributions to experimental mea-
surements of a total inclusive observable, the normalised
hadronic branching fraction of τ lepton decays,

Rτ = Γ (τ− → hadrons ντ )

Γ (τ− → e−νeντ )
, (12)

invariant mass distributions (spectral functions) of hadronic
final states of τ -decays, and the “shrinking error” effect of
the QCD energy evolution of αs towards higher energies5

provide the means for one of the most precise determina-
tions of αs(MZ0). Theoretically, Rτ is predicted to be [40]

Rτ = NcSEW|Vud|2(1 + δ′
EW + δpert + δnonpert). (13)

Here, SEW = 1.0189(6) [41] and δ′
EW = 0.001(1) [42] are

electroweak corrections, |Vud|2 = 0.97418(27) [9], δpert and
δnonpert are perturbative and non-perturbative QCD cor-
rections. Most recently, δpert was calculated to complete
N3LO perturbative order, O(α4

s ) [18]; it is of similar struc-
ture as the one for the hadronic branching fraction RZ of
the Z0 boson. Based on the operator product expansion
(OPE) [43], the non-perturbative corrections are estimated
to be small [40], δnonpert ∼ −0.007 ± 0.004. A comprehen-
sive review of the physics of hadronic τ decays was given
in [44].

Since 2006, several authors have revisited the determi-
nation of αs from τ decays [18, 45–50]. These studies
are based on data from LEP [51, 52] and—partly—from
BABAR [53]. They differ, however, in the detailed treat-
ment and usage of the perturbative QCD expansion of Rτ .
In particular, the usage of either a fixed-order (FOPT) or
contour improved perturbative expansion (CIPT), and differ-
ences in the treatment and inclusion of non-perturbative cor-
rections, result in systematic differences in the central values
of αs(Mτ ), ranging from 0.316 to 0.344, as summarised in
Fig. 4. Results based on FOPT turn out to be systematically
lower than those using CIPT—a trend being known for quite
some time, and being actively disputed in the literature, but
not finally being solved.

The results shown in Fig. 4, within their assigned total
uncertainties, are partly incompatible with each other. This
is especially true if considering that they are based on the
same data sets. The main reason for these discrepancies
is the usage of either the FOPT [45, 46, 48, 50] (marked
Beneke, Caprini, Maltmann and Narison) or the CIPT [47,
49] (marked Davier and Menke) perturbative expansions.
Only the result of Baikov et al. [18] averages between these
two expansions, and assigns an overall error which includes
the difference between these two.

5According to (1) and (2), in leading order, �αs(Q
2)/αs(Q

2) ∼
αs(Q

2). Therefore, since αs(Q
2) decreases by about a factor of 3 when

running from Q2 = M2
τ to M2

Z , the relative error of αs also decreases
by about a factor of 3.
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Fig. 4 Determinations of αs from hadronic τ lepton decays [18,
45–50]. The results are all based on the same experimental data and
on perturbative QCD predictions to O(α4

s ), however vary in preference
or range of the perturbative expansion and inclusion and treatment of
non-perturbative corrections (see text). The vertical line and shaded
band show the average value and uncertainty used as overall result
from τ decays in this review

In view of these differences and for the sake of including
the apparent span between different perturbative expansions
in the overall error, the range shown as shaded band in Fig. 4
and the corresponding central value is taken as the final re-
sult from τ -decays, leading to

αs(Mτ ) = 0.330 ± 0.014,

where the error is dominated by the theoretical uncertainty
of the perturbative expansion. Running this value to the Z0

rest mass of 91.2 GeV using the 4-loop solution of the β-
function (see (6)) with 3-loop matching at the heavy quark
pole masses Mc = 1.5 GeV and Mb = 4.7 GeV, results in

αs(MZ0) = 0.1197 ± 0.0016.

This value will be included in determining the world average
of αs(MZ0) as described in Sect. 4.

3.2 αs from heavy quarkonia

Heavy Quarkonia, i.e. meson states consisting of a heavy
(charm- or bottom-) quark and antiquark, are a classical
testing ground for QCD, see e.g. [54]. Masses, mass split-
tings between various states, and decay rates are observables
which can be measured quite accurately, and which can be
predicted by QCD based on both perturbation theory and on
lattice calculations.

3.2.1 αs from radiative Υ decays

Bound states of a bottom quark and antiquark are potentially
very sensitive to the value of αs because the hadronic de-
cay proceeds via three gluons, Υ → ggg → hadrons. The
lowest-order QCD term (i.e. Pl in (8)) for the hadronic Υ

decay width already contains αs to the 3rd power. The situ-
ation is more complicated, however, due to relativistic cor-
rections and to the unknown wave function of the Υ at the
origin.

The wave function and relativistic corrections largely
cancel out in ratios of decay widths like

Rγ = Γ (Υ → γgg)

Γ (Υ → ggg)

which therefore are the classical observables for precise de-
terminations of αs.

In [55], recent CLEO data [56] are used to determine
αs from radiative decays of the Υ (1S). The theoretical pre-
dictions include QCD up to NLO (O(α3

s )). They are based
on recent estimates of colour octet operators and avoid any
model dependences. The value obtained from this study is

αs(MZ0) = 0.119+0.006
−0.005.

It is compatible with previous results from similar stud-
ies, see e.g. [10, 39] and references quoted therein. It will
be included in the calculation of the new world average of
αs(MZ0).

3.2.2 αs from lattice QCD

Determinations of αs based on lattice QCD calculations
have become increasingly inclusive and precise in the past,
including light quarks (u, d and s) in the vacuum polarisation
and incorporating finer lattice spacing.

In a recent study by the HPQCD collaboration [37], the
QCD parameters—the bare coupling constant and the bare
quark masses—are tuned to reproduce the measured Υ ′–Υ

meson mass difference. The u, d and s quark masses are ad-
justed to give correct values of various light meson masses.
With these parameters set, there are no other free physical
parameters, and the simulation is used to provide accurate
QCD predictions. Non-perturbative values of several short-
distance quantities are computed and compared to respective
perturbative calculations which are given in NNLO pertur-
bation theory. From a fit to 22 short-distance quantities, the
value of

αs(MZ0) = 0.1183 ± 0.0008

is finally obtained. The total error includes finite lattice spac-
ing, finite lattice volume, perturbative and extrapolation un-
certainties. This result will be an important ingredient of the
new world average determined in Sect. 4.

3.3 αs from deep inelastic scattering

Measurements of scaling violations in deep inelastic lepton–
nucleon scattering belong to the earliest methods used to de-
termine αs. The first significant determinations of αs, being
based on perturbative QCD prediction in NLO, date back to
1979 [57].
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Today, a large number of results is available from fixed
target reactions using beams of electrons, muons or neu-
trinos, in the Q2 range up to O (100 GeV2). With the ad-
vent of the electron-proton collider HERA the Q2 range has
been extended by up to two orders of magnitude. In addition
to scaling violations of structure functions, αs is also deter-
mined from moments of structure functions, from QCD sum
rules and—similar as in e+e− annihilation—from hadronic
jet production and event shapes. Improved QCD predictions
as well as new experimental studies provided new results
from a combined study of world data on structure functions,
and from jet production at HERA.

3.3.1 αs from world data on non-singlet structure functions

Perturbative predictions of physical processes in lepton–
nucleon and in hadron–hadron collisions depend on quark-
and gluon-densities in the nucleon. Assuming factorisa-
tion between short-distance, hard scattering processes which
can be calculated using QCD perturbation theory, and low-
energy or long-range processes which are not accessible by
perturbative methods, such cross sections are parametrised
by a set of structure functions Fi (i = 1, 2, 3) which are also
interpreted as sums of parton (quark, antiquark and gluon)
densities in the nucleon. While perturbative QCD cannot
predict the functional form of parton densities and struc-
ture functions, their energy evolution is described by the so-
called DGLAP equations [58–60].

A study [61] of the available world data on deep inelas-
tic lepton–proton and lepton–deuteron scattering provided a
determination of the valence quark parton densities and of
αs in wide ranges of the Bjorken scaling variable x and Q2.
In the non-singlet case, where heavy flavour effects are neg-
ligibly small, the analysis is extended to QCD in O(α3

s ) per-
turbative expansion.

The determination of αs to this level results in

αs(MZ0) = 0.1142 ± 0.0023,

where the total error includes a theoretical uncertainty of
±0.0008 which is taken from the difference between the
N3LO and the NNLO result. This value will be included in
the determination of the world average of αs(MZ0).

As it appears, fits of αs in determinations of parton den-
sity functions from deep inelastic scattering processes alone
result in somewhat smaller values than those which also
include hadron collider data, and they are systematically
smaller than the world average value of αs(MZ0), see be-
low. For instance, in [62] which includes deep inelastic
scattering and hadron collider data, a value of αs(MZ0) =
0.1171 ± 0.0014exp. is obtained, with an additional theoret-
ical uncertainty estimated to be smaller than ±0.002.

3.3.2 αs from jet production
in deep inelastic scattering processes

Measurements of αs from jet production in deep inelastic
lepton–nucleon scattering at the HERA collider have been
and continue to be an active field of research. Inclusive as
well as differential jet production rates were studied in the
energy range of Q2 ∼ 10 up to 15000 GeV2, based on sim-
ilar jet definitions and algorithms as used in e+e− annihila-
tion.

In a recent summary and combination [63] of precision
measurements at HERA, values of αs where determined
from fits of NLO QCD predictions to data of inclusive jet
cross sections in neutral current deep inelastic scattering at
high Q2 [64–66]. The overall combined result,

αs(MZ0) = 0.1198 ± 0.0032,

has a reduced theoretical uncertainty of ±0.0026 (added in
quadrature to the experimental error of ±0.0019) compared
to previous combinations, due to carefully selected ranges of
data in Q2 ranges where theoretical uncertainties are mini-
mal [63]. This combined result will be included in the deter-
mination of the world average of αs(MZ0).

3.4 αs from hadronic event shapes and jet production
in e+e− annihilation

Observables parameterising hadronic event shapes and jet
production rates are the classical inputs for αs studies in
e+e− annihilation. The measurements summarised in pre-
vious reviews [10, 39, 67, 68] were based on QCD predic-
tions in NLO, which partly included summation of next-to-
leading logarithms (NLLA) to all orders. As one of the most
notable and long awaited theoretical improvements, com-
plete NNLO predictions became available recently [16, 17],
which are also matched with leading and next-to-leading
logarithms resummed to all orders [69] (NNLO + NLLA).

The advancement in theoretical descriptions was in-
stantly used to determine αs from data of previous e+e−
annihilation experiments, from the PETRA and the LEP
colliders which operated from 1979 to 1986 and from
1989 to 2000, respectively. The usage of data of past ex-
periments demonstrates the need to preserve data as well
as reconstruction-, simulation- and analysis-software for a
time-span significantly exceeding the usual ∼5-year period
of post-data taking analysis.

A re-analysis [70, 71] of the ALEPH data from LEP, in
the c.m. energy range from 90 to 206 GeV, based on six
event shape and jet production observables, results in

αs(MZ0) = 0.1224 ± 0.0039.

The total error contains an experimental uncertainty of
0.0013 and is dominated by a theoretical uncertainty, mainly
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from hadronisation and from renormalisation scale depen-
dences, of 0.0037. This result is obtained using NNLO +
NLLA QCD predictions; in NNLO alone, the central value
is slightly higher (0.1240) and the total error is slightly
smaller (0.0032). NNLA terms, although they should pro-
vide a more complete perturbation series, tend to introduce
somewhat larger scale uncertainties [70, 71].

Similar results are available from a re-analysis of data
from the JADE experiment at PETRA [72], from six event
shape and jet observables at six c.m. energies in the c.m.
energy range from 14 to 46 GeV:

αs(MZ0) = 0.1172 ± 0.0051.

The total error contains an experimental uncertainty of
0.0020 and a theoretical uncertainty of 0.0046.6 Also this
result is obtained using QCD predictions in NNLO+NLLA;
the value for NNLO alone is αs(MZ0) = 0.1212 ± 0.0060.

Both the NNLO+NLLA results from ALEPH and from
JADE data are retained for the determination of the new
world average value of αs(MZ0) in this review. Because they
are based on data at different c.m. energy ranges and from
two independent experiments, they add valuable and inde-
pendent information not only on the world average, but also
on the experimental verification of the running of αs. These
two results of αs(MZ0) are included in Fig. 6; the respective
values of αs(Q), obtained at different values of c.m. ener-
gies, are displayed in Fig. 5.

Recently, the event shape observable thrust [73, 74] was
also studied using methods of effective field theory [75].
Starting from a factorisation theorem in soft–collinear ef-
fective theory, the leading, next-to-leading, next-to-next-to-
leading and the next-to-next-to-next-to-leading logarithmic
terms (N3LL) of the thrust distribution are determined and
are resummed to infinite order. This is two orders higher
than previously known resummation terms. The N3LL terms
are matched with the existing NNLO fixed-order results, and
the resulting predictions are applied to the LEP thrust data.

The resulting value of αs is αs(MZ0) = 0.1172 ± 0.0021,
whereby the error includes a theoretical uncertainty of
±0.0017. Although this is formally one of the smallest er-
rors quoted on measurements of αs(MZ0), this result is not
explicitly included in the world average calculated below.
The reason for this decision is two-fold: first, the LEP thrust
data are already included in the re-analysis of ALEPH data
described above. Second, this analysis based on effective
field theory, although being a highly interesting, alternative
approach to obtain and include higher than NNLO perturba-
tive contributions, is not yet in a state of comparable reliabil-
ity because it is based on one event shape observable only,
and therefore misses an important verification of potential
systematic uncertainties.

6At smaller c.m. energies, hadronisation but also perturbative uncer-
tainties are larger than at LEP.

3.5 αs from electroweak precision data

The determination of αs from totally inclusive observables,
like the hadronic width of the τ lepton discussed above, or
the total hadronic decay width of the Z0 boson, are of ut-
most importance because they lack many sources of system-
atic uncertainties, experimental as well as theoretical, which
differential distributions like event shapes or jet rates suffer
from. In this sense, the ratio of the hadronic to the leptonic
partial decay width, RZ = Γ (Z0 → hadrons)/Γ (Z0 →
e+e−), is a “gold plated” observable, and fits of αs and
other quantities from precision electroweak measurements
from e+e− annihilation and other processes offer excellent
prospects not being plagued by hadronisation and other sys-
tematic uncertainties, see e.g. [76].

Since 1994, the QCD correction to RZ is known in
NNLO QCD [77, 78]. The measured value from LEP, RZ =
20.767 ± 0.025 [79], results in αs(MZ0) = 0.1226 ± 0.0038,
where the error is experimental. An additional theoretical
uncertainty was estimated [10] as +0.0043

−0.0005.
As already mentioned, the full N3LO prediction of RZ ,

i.e. in O(α4
s ) perturbative expansion, is now available [18].

The negative O(α4
s ) term results in an increase of αs(MZ0)

by 0.0005, such that the actual result from the measured
value of RZ is: αs(MZ0) = 0.1231 ± 0.0038. Defining the
remaining theoretical uncertainty as the difference between
the NNLO and the N3LO result, the theory error would not
visibly contribute any more, given the current size of the ex-
perimental error on αs(MZ0) of ±0.0038.

A more precise value of αs(MZ0) can be obtained from
general fits to all existing electro-weak precision data, us-
ing data from the LEP and the SLC e+e− colliders as well
as measurements of the top-quark mass and limits on the
Higgs boson mass from Tevatron and LEP. Such global fits
result in values of αs(MZ0) with reduced experimental er-
rors. These values, however, were consistently smaller than
(but still compatible with) the ones obtained from RZ alone,
see e.g. [79].

A recent revision of the global fit to electroweak pre-
cision data [80], based on a new generic fitting package
Gfitter [81], on the up-to-date QCD corrections in N3LO,
on proper inclusion of the current limits from direct Higgs-
searches at LEP and at the Tevatron and on other improved
details, results in

αs(MZ0) = 0.1193+0.0028
−0.0027 ± 0.0005,

where the first error is experimental and the second is theo-
retical, estimated by the difference of the results in NNLO
and in N3LO QCD. This latter result will be included in the
determination of the world average value of αs(MZ0).



Eur. Phys. J. C (2009) 64: 689–703 699

4 The 2009 world average of αs(MZ0)

The new results discussed in the previous sections are sum-
marised in Table 1 and in Figs. 5 and 6. Since all of them
are based on improved theoretical predictions and methods,
and/or on improved data quality and statistics, they super-
sede and replace their respective precursor results which
were summarised in a previous review [39]. While those pre-
vious results continue to be valid measurements, they are not
discussed in this review again, and they will not be included
in the determination of a combined world average values of
αs(MZ0), according to the following reasons:

1. from each class of measurements, only the most ad-
vanced and complete analyses shall be included in the
new world average;

2. older measurements not being complemented or super-
seded by the most recent results listed above, as e.g. re-
sults from sum rules, from singlet structure functions of
deep inelastic scattering, and from jet production and b-
quark production at hadron colliders, are not included be-
cause their relatively large overall uncertainties, in gen-
eral, will not give them a sizable weight but will com-
plicate the definition of the overall error of the combined
value of αs(MZ0);

3. restricting the new world average to the most recent and
most complete (i.e. precise) results allows one to exam-
ine the consistency between the newest and the previous
generations of measurements and reviews.

4.1 Numerical procedure

The average x of a set of n different, uncorrelated mea-
surements xi of a particular quantity x with individual er-
rors or uncertainties, �xi , is commonly defined using the
method of least squares (see e.g. [9]): For xi being indepen-
dent and statistically distributed measures with a common

expectation value x but with different variances (�xi)
2, the

weighted average is defined by

x =
∑n

i=1 wixi∑n
i=1 wi

(14)

and the variance (�x)2 of x is minimised by choosing

(�x)2 = 1
∑n

i=1
1

(�xi)
2

, i.e. wi = 1

(�xi)2
. (15)

The quality of the average is defined by the χ2 variable,

χ2 =
n∑

i=1

(xi − x)2

(�xi)2
(16)

which is, for uncorrelated data, expected to be equal to the
number of degrees of freedom, ndf:

χ2 = ndf = n − 1.

The results summarised in Table 1, however, are not in-
dependent of each other. They are, in the most general case,
correlated to an unknown degree. While the statistical errors
of the data and the experimental systematic uncertainties
contained in the errors are independent and uncorrelated, the
theoretical uncertainties are very likely to be (partly) corre-
lated between different results, because they are all based on
applying perturbative QCD, and similar methods to obtain
estimates of theoretical uncertainties are being used.

For some observables, like e.g. the hadronic widths of
the Z0 boson and the τ lepton, the theoretical predictions
and hence, their uncertainties, are known to be correlated
by almost 100%. For other cases, like the results based on
lattice QCD and those based on QCD perturbation theory,
their theoretical uncertainties may not be correlated at all.
In addition to the inherent lack of knowledge of theoretical

Table 1 Summary of recent measurements of αs(MZ0 ). All eight mea-
surements are described in Sect. 3 and are included in determining
the world average value of αs(MZ0 ). The rightmost two columns give
the exclusive mean value of αs(MZ0 ) calculated without that particu-

lar measurement, and the number of standard deviations between this
measurement and the respective exclusive mean, treating errors as de-
scribed in Sect. 4. The inclusive average from all listed measurements
gives αs(MZ0 ) = 0.11842 ± 0.00067

Process Q [GeV] αs(Q) αs(MZ0 ) excl. mean αs(MZ0 ) std. dev.

τ -decays 1.78 0.330 ± 0.014 0.1197 ± 0.0016 0.11818 ± 0.00070 0.9

DIS [F2] 2–170 – 0.1142 ± 0.0023 0.11876 ± 0.00123 1.7

DIS [e-p → jets] 6–100 – 0.1198 ± 0.0032 0.11836 ± 0.00069 0.4

QQ states 7.5 0.1923 ± 0.0024 0.1183 ± 0.0008 0.11862 ± 0.00114 0.2

Υ decays 9.46 0.184+0.015
−0.014 0.119+0.006

−0.005 0.11841 ± 0.00070 0.1

e+e− [jets & shps] 14–44 – 0.1172 ± 0.0051 0.11844 ± 0.00076 0.2

e+e− [ew prec. data] 91.2 0.1193 ± 0.0028 0.1193 ± 0.0028 0.11837 ± 0.00076 0.3

e+e− [jets & shps] 91–208 – 0.1224 ± 0.0039 0.11831 ± 0.00091 1.0
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correlations, estimates of theoretical uncertainties, in gen-
eral, are performed in widely different ways, using different
methods and different ranges of parameters.

The presence of correlations, if using the equations given
above, is usually signalled by χ2 < ndf. Values of χ2 > ndf,
in most practical cases, are a sign of possibly underestimated
errors. In this review, both these cases are pragmatically han-
dled in the following way:7

In the presence of correlated errors, described by a co-
variance matrix C, the optimal procedure to determine the
average x of a sample of measurements xi is to minimise
the χ2 function

χ2 =
n∑

i,j=1

(xi − x)
(
C−1)

ij
(xj − x), (17)

which leads to

x =
(∑

ij

(
C−1)

ij
xj

)(∑

ij

(
C−1)

ij

)−1

(18)

and

�x2 =
(∑

ij

(
C−1)

ij

)−1

. (19)

The choice of Cii = (�xi)
2 and Cij = 0 for i �= j re-

tains the uncorrelated case given above. In the presence
of correlations, however, the resulting χ2 will be less than
ndf = n − 1. In cases where correlations between a particu-
lar pair of measurements i and j are known or expected, the
corresponding non-diagonal matrix elements Cij and Cji

are set to ρ�xi�xj , where ρ is the respective correlation
coefficient ranging between 0 (uncorrelated) and 1 (100%
correlation).

If the resulting χ2 is still smaller than ndf, the method
proposed in [82] will be applied: an unknown additional,
common degree of a correlation f is introduced between all
measurements, by choosing Cij = f ×�xi ×�xj for i �= j ,
and f is adjusted such that χ2 = ndf.

In cases where the assumption of uncorrelated errors re-
sults in χ2 > ndf, and without knowledge about which of the
errors �xi are possibly underestimated, all individual errors
are scaled up by a common factor g such that the resulting
value of χ2/ndf, using the definition for uncorrelated errors,
will equal unity.

Note that both for values of f > 0 or g > 1, �x in-
creases, compared to the uncorrelated (f = 0 and g = 1)
case.

7Since most measurements and their respective experimental and theo-
retical errors are defined and estimated in different ways, in this review,
as already done previously, only the total uncertainties are considered,
and no attempt is made to consistently separate experimental and the-
oretical errors.

4.2 Determination of the world average

The eight different determinations of αs(Q
2) summarised

and discussed in the previous sections are listed in Table 1
and are displayed in Fig. 5. The energy dependence of these
results exactly follows the expectation of the QCD predic-
tion of the running coupling. It is therefore straightforward
to extrapolate all measurements of αs(Q

2) to the common
scale of MZ , using the procedures and equations given in
Sect. 2. The corresponding values of αs(MZ0) are listed in
Table 1 and displayed in Fig. 6. Applying (14), (15) and

Fig. 5 Summary of measurements of αs as a function of the re-
spective energy scale Q. The curves are QCD predictions for the
combined world average value of αs(MZ0 ), in 4-loop approximation
and using 3-loop threshold matching at the heavy quark pole masses
Mc = 1.5 GeV and Mb = 4.7 GeV. Full symbols are results based
on N3LO QCD, open circles are based on NNLO, open triangles and
squares on NLO QCD. The cross-filled square is based on lattice QCD.
The filled triangle at Q = 20 GeV (from DIS structure functions) is
calculated from the original result which includes data in the energy
range from Q = 2 to 170 GeV

Fig. 6 Summary of measurements of αs(MZ0 ). The vertical
line and shaded band mark the final world average value of
αs(MZ0 ) = 0.1184 ± 0.0007 determined from these measurements
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(16) to this set of measurements, assuming that the errors
are not correlated, results in an average value of αs(MZ0) =
0.11842 ± 0.00063 with χ2/ndf = 5.4/7.

The fact that χ2 < ndf signals a possible correlation
between all or subsets of the eight input results. Assum-
ing an overall correlation factor f and demanding that
χ2 = ndf = 7 requires f = 0.23, inflating the overall error
from 0.00063 to 0.00089.

In fact, there are two pairs of results which are known to
be largely correlated:

– the two results from e+e− event shapes based on the data
from JADE and from ALEPH use the same theoretical
predictions and similar hadronisation models to correct
these predictions for the transitions of quarks and gluons
to hadrons. While the experimental errors are uncorre-
lated, the theoretical uncertainties may be assumed to be
correlated to 100%. The latter account for about 2/3 to
3/4 of the total errors. An appropriate choice of correla-
tion factor between the two may then be f = 0.67.

– the QCD predictions for the hadronic widths of the τ -
lepton and the Z0 boson are essentially identical, so the
respective results on αs are correlated, too. The values and
total errors of αs(MZ0) from τ decays must therefore be
correlated to a large extend, too. In this case, however, the
error of one measurement is almost entirely determined
by the experimental error (Z0-decays), while the other,
from τ -decays, is mostly theoretical. A suitable choice of
the correlation factor between both these results may thus
be f = 0.5.

Inserting these two pairs of correlations into the error
matrix C, the χ2/ndf of the averaging procedure results in
6.8/7, and the overall error on the (unchanged) central value
of αs(MZ0) changes from 0.00063 to 0.00067. Therefore the
new world average value of αs(MZ0) is defined to be

αs(MZ0) = 0.1184 ± 0.0007.

For seven out of the eight measurements of αs(MZ0), the
average value of 0.1184 is within one standard deviation of
their assigned errors. One of the measurements, from struc-
ture functions [61], deviates from the mean value by more
than one standard deviation, see Fig. 6.

The mean value of αs(MZ0) is potentially dominated by
the αs result with the smallest overall assigned uncertainty,
which is the one based on lattice QCD [37]. In order to ver-
ify this degree of dominance on the average result and its
error, and to test the compatibility of each of the measure-
ments with the others, exclusive averages, leaving out one
of the 8 measurements at a time, are calculated. These are
presented in the 5th column of Table 1, together with the

corresponding number of standard deviations8 between the
exclusive mean and the respective single measurement.

As can be seen, the values of exclusive means vary only
between a minimum of 0.11818 and a maximum 0.11876.
Note that in the case of these exclusive means and accord-
ing to the “rules” of calculating their overall errors, in four
out of the eight cases small error scaling factors of g =
1.06 . . .1.08 had to be applied, while in the other cases, over-
all correlation factors of about 0.1, and in one case of 0.7,
had to be applied to assure χ2/ndf = 1. Most notably, the av-
erage value αs(MZ0) changes to αs(MZ0) = 0.1186±0.0011
when omitting the result from lattice QCD.

5 Summary and discussion

In this review, new results and measurements of αs are sum-
marised, and the world average value of αs(MZ0), as previ-
ously given in [9, 10, 39], is updated. Based on eight recent
measurements, which partly use new and improved N3LO,
NNLO and lattice QCD predictions, the new average value
is

αs(MZ0) = 0.1184 ± 0.0007,

which corresponds to

Λ
(5)

MS
= (213 ± 9) MeV.

This result is consistent with the one obtained in the pre-
vious review three years ago [39], which was αs(MZ0) =
0.1189 ± 0.0010. The previous and the actual world aver-
age have been obtained from a non-overlapping set of single
results; their agreement therefore demonstrates a large de-
gree of compatibility between the old and the new, largely
improved set of measurements and theoretical methods.

The individual measurements, as listed in Table 1 and dis-
played in Fig. 6, show a very satisfactory agreement with
each other and with the overall average: only one out of
eight measurements exceeds a deviation from the average
by more than one standard deviation, and the largest devi-
ation between any two out of the eight results, namely the
ones from τ decays and from structure functions, amounts
to 2 standard deviations.9

There remains, however, an apparent and long-standing
systematic difference: results from structure functions favour
smaller values of αs(MZ0) than most of the others, i.e. those
from e+e− annihilations, from τ decays, but also those from
jet production in deep inelastic scattering. This issue appar-
ently remains to be true, although almost all of the new

8The number of standard deviations is defined as the square-root of the
value of χ2.
9Assuming their assigned total errors to be fully uncorrelated.
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results are based on significantly improved QCD predic-
tions, up to N3LO for structure functions, τ and Z0 hadronic
widths, and NNLO for e+e− event shapes.

The reliability of “measurements” of αs based on “ex-
periments” on the lattice have gradually improved over the
years, too. Including vacuum polarisation of three light
quark flavours and extended means to understand and cor-
rect for finite lattice spacing and volume effects, the over-
all error of these results significantly decreased over time,
while the value of αs(MZ0) gradually approached the world
average. Lattice results today quote the smallest overall er-
ror on αs(MZ0); it is, however, ensuring to see and note that
the world average without lattice results is only marginally
different, while the small size of the total uncertainty on the
world average is, naturally, largely influenced by the lattice
result.

In order to demonstrate the agreement of measurements
with the specific energy dependence of αs predicted by
QCD, in Fig. 5 the recent measurements of αs are shown as
a function of the energy scale Q. For those results which are
based on several αs determinations at different values of en-
ergy scales Q, the individual values of αs(Q) are displayed.
For the value from structure functions such a breakup is not
possible; instead, the corresponding result derived for a typ-
ical energy scale of Q = 20 GeV is displayed.

The measurements significantly prove the validity of the
concept of asymptotic freedom; they are in perfect agree-
ment with the QCD prediction of the running coupling. This
is further corroborated by Fig. 7, where a selected sample of
the measurements is plotted, now as a function of 1/ logQ,
in order to demonstrate the data reproducing the specific
logarithmic shape of the running as predicted by QCD, sig-
nalling that indeed αs(Q) → 0 for Q → ∞.

What are the future prospects of measurements of αs?
With the given degree of data and theory precision, fur-
ther improvements will be difficult and may take quite some
time. Experimentally, a linear e+e− collider, especially if
run in the “Giga-Z” mode, has the potential to decrease the
dominating experimental error of αs(MZ0) from the mea-
surement of RZ , down to and below its theoretical uncer-
tainty which currently is assumed to be, in N3LO, ±0.0005.

While it is unlikely that QCD perturbation theory will
improve to yet one order higher than the existing N3LO or
NNLO predictions, improvements are likely, and actually
are very necessary, for QCD predictions of jet production
in deep inelastic scattering and in hadron collisions, where
calculations currently are limited to NLO. The precision of
QCD tests, but also the sensitivity for observing new physics
signals at the LHC, will largely depend on a further advance-
ment of QCD predictions for hadron collisions.

Last but not least, further developments of non- pertur-
bative methods are mandatory to bridge the gap between
quarks and gluons and their final states, hadrons. They may

Fig. 7 Selected measurements of αs, as a function of the inverse loga-
rithm of the energy scale Q, in order to demonstrate concordance with
Asymptotic Freedom. The full line is the QCD prediction in 4-loop ap-
proximation with 3-loop threshold matching at the heavy quark pole
masses. The dashed line indicates extrapolation of the 5-flavour pre-
diction without threshold matching

in fact shed more light into the systematic differences be-
tween some classes of measurements as discussed above.

Future improvement of theoretical predictions and mod-
els require the conservation of data and of reconstruction
and simulation code of current and past experiments; es-
pecially in the case of deep inelastic scattering data, re-
application of improved predictions and models carry a large
potential for future advancements in this field.
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