227 research outputs found

    TinyNode: a comprehensive platform for wireless sensor network applications

    Get PDF

    Biermann Mechanism in Primordial Supernova Remnant and Seed Magnetic Fields

    Full text link
    We study generation of magnetic fields by the Biermann mechanism in the pair-instability supernovae explosions of first stars. The Biermann mechanism produces magnetic fields in the shocked region between the bubble and interstellar medium (ISM), even if magnetic fields are absent initially. We perform a series of two-dimensional magnetohydrodynamic simulations with the Biermann term and estimate the amplitude and total energy of the produced magnetic fields. We find that magnetic fields with amplitude 10−14−10−1710^{-14}-10^{-17} G are generated inside the bubble, though the amount of magnetic fields generated depend on specific values of initial conditions. This corresponds to magnetic fields of 1028−103110^{28}-10^{31} erg per each supernova remnant, which is strong enough to be the seed magnetic field for galactic and/or interstellar dynamo.Comment: 12 pages, 3 figure

    The spatial energy spectrum of magnetic fields in our Galaxy

    Full text link
    Interstellar magnetic fields exist over a broad range of spatial scales, extending from the large Galactic scales (∌10\sim 10 kpc) down to the very small dissipative scales (â‰Ș1\ll 1 pc). In this paper, we use a set of 490 pulsars distributed over roughly one third of the Galactic disk out to a radius R≃10R \simeq 10 kpc (assuming R⊙=8.5R_\odot = 8.5 kpc) and combine their observed rotation and dispersion measures with their estimated distances to derive the spatial energy spectrum of the Galactic interstellar magnetic field over the scale range 0.5−150.5 - 15 kpc. We obtain a nearly flat spectrum, with a 1D power-law index α=−0.37±0.10\alpha=-0.37\pm0.10 for EB(k)=CkαE_{\rm B}(k)=C k^{\alpha} and an rms field strength of approximately 6ÎŒ6 \muG over the relevant scales. Our study complements the derivation of the magnetic energy spectrum over the scale range 0.03−1000.03 - 100 pc by \citet{ms96b}, showing that the magnetic spectrum becomes flatter at larger scales. This observational result is discussed in the framework of current theoretical and numerical models.Comment: 7 pages, 6 figures, ApJ accepte

    In Situ Origin of Large Scale Galactic Magnetic Fields Without Kinetic Helicity?

    Get PDF
    The origin and sustenance of large scale galactic magnetic fields has been a long standing and controversial astrophysical problem. Here an alternative to the ``standard'' \a-\Omega mean field dynamo and primordial theories is pursued. The steady supply of supernovae induced turbulence exponentiates the total field energy, providing a significant seed mean field that can be linearly stretched by shear. The observed micro-Gauss fields would be produced primarily within one vertical diffusion time since it is only during this time that linear stretching can compete with diffusion. This approach does not invoke exponential mean field dynamo growth from the helicity \a-effect but does employ turbulent diffusion, which limits the number of large scale reversals. The approach could be of interest if the helicity effect is suppressed independently of the turbulent diffusion. This is an important but presently unresolved issue.Comment: 15 pages TeX, accepted, ApJ

    Magnetic field structure due to the global velocity field in spiral galaxies

    Full text link
    We present a set of global, self-consistent N-body/SPH simulations of the dynamic evolution of galactic discs with gas and including magnetic fields. We have implemented a description to follow the evolution of magnetic fields with the ideal induction equation in the SPH part of the Vine code. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a div(B)-free description, an constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the Gadget code which includes also cleaning methods for div(B). Starting with a homogeneous seed field we find that by differential rotation and spiral structure formation of the disc the field is amplified by one order of magnitude within five rotation periods of the disc. The amplification is stronger for higher numerical resolution. Moreover, we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry for the evolution of the magnetic field.Comment: 17 pages, 18 figure

    Strong magnetic fields and cosmic rays in very young galaxies

    Get PDF
    We present a scenario for efficient magnetization of very young galaxies about 0.5 Gigayears after the Big-Bang by a cosmic ray-driven dynamo. These objects experience a phase of strong star formation during this first 10910^9 years. We transfer the knowledge of the connection between star formation and the production rate of cosmic rays by supernova remnants to such high redshift objects. Since the supernova rate is a direct measure for the production rate of cosmic rays we conclude that very young galaxies must be strong sources of cosmic rays. The key argument of our model is the finding that magnetic fields and cosmic rays are dynamically coupled, i.e. a strong cosmic ray source contains strong magnetic fields since the relativistic particles drive an efficient dynamo in a galaxy via their buoyancy. We construct a phenomenological model of a dynamo driven by buoyancy of cosmic rays and show that if azimuthal shearing is strong enough the dynamo amplification timescale is close to the buoyancy timescale of the order of several 107Ă·10810^7 \div 10^8 yr. We predict that young galaxies are strongly magnetized and may contribute significantly to the gamma-ray-background.Comment: 9 pages, 1 figure, accepted for Astronomy and Astrophysic

    Opportunistic routing in wireless mesh networks

    Get PDF
    Opportunistic Routing (OR) has been proposed as a way to increase the performance of wireless networks by exploiting its broadcast nature. In OR, instead of pre-selecting a single specific node to be the next-hop as a forwarder for a packet, multiple nodes can potentially be selected as the next-hop forwarder. Thus the source can use multiple potential paths to deliver the packets to the destination. More specially, when the current node transmits a packet, all the candidates that receive the packet successfully will coordinate with each other to determine which one would actually forward the packet according to some criteria, while the other nodes will simply discard the packet. In this chapter, we survey the state of the art in OR, then focus on the candidates selection algorithms and carry out a comparative performance evaluation of the most relevant proposals appeared in the literature.Peer ReviewedPostprint (author’s final draft

    Magnetogenesis from Cosmic String Loops

    Full text link
    Large-scale coherent magnetic fields are observed in galaxies and clusters, but their ultimate origin remains a mystery. We reconsider the prospects for primordial magnetogenesis by a cosmic string network. We show that the magnetic flux produced by long strings has been overestimated in the past, and give improved estimates. We also compute the fields created by the loop population, and find that it gives the dominant contribution to the total magnetic field strength on present-day galactic scales. We present numerical results obtained by evolving semi-analytic models of string networks (including both one-scale and velocity-dependent one-scale models) in a Lambda-CDM cosmology, including the forces and torques on loops from Hubble redshifting, dynamical friction, and gravitational wave emission. Our predictions include the magnetic field strength as a function of correlation length, as well as the volume covered by magnetic fields. We conclude that string networks could account for magnetic fields on galactic scales, but only if coupled with an efficient dynamo amplification mechanism.Comment: 10 figures; v3: small typos corrected to match published version. MagnetiCS, the code described in paper, is available at http://markcwyman.com/ and http://www.damtp.cam.ac.uk/user/dhw22/code/index.htm

    Evidence for dark matter in the inner Milky Way

    Full text link
    The ubiquitous presence of dark matter in the universe is today a central tenet in modern cosmology and astrophysics. Ranging from the smallest galaxies to the observable universe, the evidence for dark matter is compelling in dwarfs, spiral galaxies, galaxy clusters as well as at cosmological scales. However, it has been historically difficult to pin down the dark matter contribution to the total mass density in the Milky Way, particularly in the innermost regions of the Galaxy and in the solar neighbourhood. Here we present an up-to-date compilation of Milky Way rotation curve measurements, and compare it with state-of-the-art baryonic mass distribution models. We show that current data strongly disfavour baryons as the sole contribution to the galactic mass budget, even inside the solar circle. Our findings demonstrate the existence of dark matter in the inner Galaxy while making no assumptions on its distribution. We anticipate that this result will compel new model-independent constraints on the dark matter local density and profile, thus reducing uncertainties on direct and indirect dark matter searches, and will shed new light on the structure and evolution of the Galaxy.Comment: First submitted version of letter published in Nature Physics on Febuary 9, 2015: http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3237.htm

    The supernova rate-velocity dispersion relation in the interstellar medium

    Full text link
    We investigate the relationship between the velocity dispersion of the gas and the SN rate and feedback efficiency in the ISM. We explore the constancy of the velocity dispersion profiles in the outer parts of galactic disks at~6-8 km s^-1, and the transition to the starburst regime. Our results show that a) SN driving leads to constant velocity dispersions of sig~6 km s^-1 for the total gas and sigHI~3 km s^-1 for the HI gas, independent of the SN rate, for values of the rate between 0.01-0.5 the Galactic rate R_{G},b) the position of the transition to the starburst regime at SFR/Area~5*10^-3-10^-2 M_sol yr^-1 kpc^-2 observed in the simulations, is in good agreement with the transition to the starburst regime in the observations, c) for the high SN rates, no HI gas is present in the simulations box, however, for the total gas velocity dispersion, there is good agreement between the models and the observations,d) at the intermediate SN rates R/R_{G}~0.5-1, taking into account the thermal broadening of the HI line helps reach a good agreement in that regime between the models and the observations,e) for R/R_{G}<0.5, sig and sigHI fall below the observed values by a factor of~2. However, a set of simulation with different values of epsilon indicates that for larger values of the supernova feedback efficiencies, velocity dispersions of the HI gas of the order of 5-6 km s^{-1} can be obtained, in closer agreement with the observations. The fact that for R/R_{G}<0.5, the HI gas velocity dispersions are a factor ~2 smaller than the observed values could result from the fact that we might have underestimated the SN feedback efficiency. It might also be an indication that other physical processes couple to the stellar feedback in order to produce the observed level of turbulence in galactic disks.Comment: 44 pages, 22 figures. Accepted to Ap
    • 

    corecore