68 research outputs found
The trace left by signature-change-induced compactification
Recently, it has been shown that an infinite succession of classical
signature changes (''signature oscillations'') can compactify and stabilize
internal dimensions, and simultaneously leads, after a coarse graining type of
average procedure, to an effective (''physical'') space-time geometry
displaying the usual Lorentzian metric signature. Here, we consider a minimally
coupled scalar field on such an oscillating background and study its effective
dynamics. It turns out that the resulting field equation in four dimensions
contains a coupling to some non-metric structure, the imprint of the
''microscopic'' signature oscillations on the effective properties of matter.
In a multidimensional FRW model, this structure is identical to a massive
scalar field evolving in its homogeneous mode.Comment: 15 pages, LaTeX, no figure
Bohmian arrival time without trajectories
The computation of detection probabilities and arrival time distributions
within Bohmian mechanics in general needs the explicit knowledge of a relevant
sample of trajectories. Here it is shown how for one-dimensional systems and
rigid inertial detectors these quantities can be computed without calculating
any trajectories. An expression in terms of the wave function and its spatial
derivative, both restricted to the boundary of the detector's spacetime volume,
is derived for the general case, where the probability current at the
detector's boundary may vary its sign.Comment: 20 pages, 12 figures; v2: reference added, extended introduction,
published versio
Cosmological perturbations and classical change of signature
Cosmological perturbations on a manifold admitting signature change are
studied. The background solution consists in a Friedmann-Lemaitre-Robertson-
Walker (FLRW) Universe filled by a constant scalar field playing the role of a
cosmological constant. It is shown that no regular solution exist satisfying
the junction conditions at the surface of change. The comparison with similar
studies in quantum cosmology is made.Comment: 35 pages, latex, 2 figures available at [email protected], to
appear in Physical Review
Quantum creation and inflationary universes: a critical appraisal
We contrast the possibility of inflation starting a) from the universe's
inception or b) from an earlier non-inflationary state. Neither case is ideal
since a) assumes quantum mechanical reasoning is straightforwardly applicable
to the early universe; while case b) requires that a singularity still be
present. Further, in agreement with Vachaspati and Trodden [1] case b) can only
solve the horizon problem if the non-inflationary phase has equation of state
.Comment: 21 pages Late
Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies
A sum-over-histories generalized quantum theory is developed for homogeneous
minisuperspace type A Bianchi cosmological models, focussing on the particular
example of the classically recollapsing Bianchi IX universe. The decoherence
functional for such universes is exhibited. We show how the probabilities of
decoherent sets of alternative, coarse-grained histories of these model
universes can be calculated. We consider in particular the probabilities for
classical evolution defined by a suitable coarse-graining. For a restricted
class of initial conditions and coarse grainings we exhibit the approximate
decoherence of alternative histories in which the universe behaves classically
and those in which it does not. For these situations we show that the
probability is near unity for the universe to recontract classically if it
expands classically. We also determine the relative probabilities of
quasi-classical trajectories for initial states of WKB form, recovering for
such states a precise form of the familiar heuristic "J d\Sigma" rule of
quantum cosmology, as well as a generalization of this rule to generic initial
states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout.
Physics unchanged. To appear in Phys. Rev.
Optimal estimation of qubit states with continuous time measurements
We propose an adaptive, two steps strategy, for the estimation of mixed qubit
states. We show that the strategy is optimal in a local minimax sense for the
trace norm distance as well as other locally quadratic figures of merit. Local
minimax optimality means that given identical qubits, there exists no
estimator which can perform better than the proposed estimator on a
neighborhood of size of an arbitrary state. In particular, it is
asymptotically Bayesian optimal for a large class of prior distributions.
We present a physical implementation of the optimal estimation strategy based
on continuous time measurements in a field that couples with the qubits.
The crucial ingredient of the result is the concept of local asymptotic
normality (or LAN) for qubits. This means that, for large , the statistical
model described by identically prepared qubits is locally equivalent to a
model with only a classical Gaussian distribution and a Gaussian state of a
quantum harmonic oscillator.
The term `local' refers to a shrinking neighborhood around a fixed state
. An essential result is that the neighborhood radius can be chosen
arbitrarily close to . This allows us to use a two steps procedure by
which we first localize the state within a smaller neighborhood of radius
, and then use LAN to perform optimal estimation.Comment: 32 pages, 3 figures, to appear in Commun. Math. Phy
Trajectories for the Wave Function of the Universe from a Simple Detector Model
Inspired by Mott's (1929) analysis of particle tracks in a cloud chamber, we
consider a simple model for quantum cosmology which includes, in the total
Hamiltonian, model detectors registering whether or not the system, at any
stage in its entire history, passes through a series of regions in
configuration space. We thus derive a variety of well-defined formulas for the
probabilities for trajectories associated with the solutions to the
Wheeler-DeWitt equation. The probability distribution is peaked about classical
trajectories in configuration space. The ``measured'' wave functions still
satisfy the Wheeler-DeWitt equation, except for small corrections due to the
disturbance of the measuring device. With modified boundary conditions, the
measurement amplitudes essentially agree with an earlier result of Hartle
derived on rather different grounds. In the special case where the system is a
collection of harmonic oscillators, the interpretation of the results is aided
by the introduction of ``timeless'' coherent states -- eigenstates of the
Hamiltonian which are concentrated about entire classical trajectories.Comment: 37 pages, plain Tex. Second draft. Substantial revision
Decoherent histories analysis of the relativistic particle
The Klein-Gordon equation is a useful test arena for quantum cosmological
models described by the Wheeler-DeWitt equation. We use the decoherent
histories approach to quantum theory to obtain the probability that a free
relativistic particle crosses a section of spacelike surface. The decoherence
functional is constructed using path integral methods with initial states
attached using the (positive definite) ``induced'' inner product between
solutions to the constraint equation. The notion of crossing a spacelike
surface requires some attention, given that the paths in the path integral may
cross such a surface many times, but we show that first and last crossings are
in essence the only useful possibilities. Different possible results for the
probabilities are obtained, depending on how the relativistic particle is
quantized (using the Klein-Gordon equation, or its square root, with the
associated Newton-Wigner states). In the Klein-Gordon quantization, the
decoherence is only approximate, due to the fact that the paths in the path
integral may go backwards and forwards in time. We compare with the results
obtained using operators which commute with the constraint (the ``evolving
constants'' method).Comment: 51 pages, plain Te
Spacetime Coarse Grainings in the Decoherent Histories Approach to Quantum Theory
We investigate the possibility of assigning consistent probabilities to sets
of histories characterized by whether they enter a particular subspace of the
Hilbert space of a closed system during a given time interval. In particular we
investigate the case that this subspace is a region of the configuration space.
This corresponds to a particular class of coarse grainings of spacetime
regions. We consider the arrival time problem and the problem of time in
reparametrization invariant theories as for example in canonical quantum
gravity. Decoherence conditions and probabilities for those application are
derived. The resulting decoherence condition does not depend on the explicit
form of the restricted propagator that was problematic for generalizations such
as application in quantum cosmology. Closely related is the problem of
tunnelling time as well as the quantum Zeno effect. Some interpretational
comments conclude, and we discuss the applicability of this formalism to deal
with the arrival time problem.Comment: 23 pages, Few changes and added references in v
Mapping hotel brand positioning and competitive landscapes by text-mining user-generated content
YesThis study uncovers hotel brand positioning and competitive landscape mapping by text-mining user-generated content (UGC). Rather than relying on a single dimension of consumer evaluation, the current study detects brand attributes by using both customer preferences as well as perceptual performance to develop meaningful insights. For this, the study combines content analysis and repertory grid analysis (RGA) to answer three key research issues. 111,986 hotel reviews from two biggest Chinese cities are used to explore and visualize the competitive landscape of six selected hotel brands across three hotel categories. Findings from the study will not only advance the existing literature on brand positioning and competitive landscape mapping but also help practitioners in developing brand positioning strategies to fight competitors within and across hotel categories
- …