76 research outputs found

    Synthesis and characterization of La<sub>0.8</sub>Sr<sub>1.2</sub>Co<sub>0.5</sub>M<sub>0.5</sub>O<sub>4-?</sub> (M=Fe, Mn)

    Get PDF
    The M4+-containing K2NiF4-type phases La0.8Sr1.2Co0.5Fe0.5O4 and La0.8Sr1.2Co0.5Mn0.5O4 have been synthesized by a sol-gel procedure and characterized by X-ray powder diffraction, thermal analysis, neutron powder diffraction and Mössbauer spectroscopy. Oxide ion vacancies are created in these materials via reduction of M4+ to M3+ and of Co3+ to Co2+. The vacancies are confined to the equatorial planes of the K2NiF4-type structure. A partial reduction of Mn3+ to Mn2+ also occurs to achieve the oxygen stoichiometry in La0.8Sr1.2Co0.5Mn0.5O3.6. La0.8Sr1.2Co0.5Fe0.5O3.65 contains Co2+ and Fe3+ ions which interact antiferromagnetically and result in noncollinear magnetic order consistent with the tetragonal symmetry. Competing ferromagnetic and antiferromagnetic interactions in La0.8Sr1.2Co0.5Fe0.5O4, La0.8Sr1.2Co0.5Mn0.5O4 and La0.8Sr1.2Co0.5Mn0.5O3.6 induce spin glass properties in these phases

    Morphology-controlled synthesis of novel nanostructured Li4P2O7 with enhanced Li-ion conductivity for all-solid-state battery applications

    Get PDF
    Mechanical stiffness of oxide-type solid-electrolytes is a major drawback which has hindered their practical application in all-solid-state Li-ion batteries to date. Despite their enhanced structural and electrochemical stabilities, lack of deformability of fast-ion conducting oxides impedes the integration of these materials in bulk-type solid-state cells. Deformable solid-electrolytes such as sulfides, on the other hand, lack sufficient electrochemical stability in contact with conventional cathodes. This has recently triggered a search for new materials that combine high ion-conductivity, deformability and sufficient electrochemical stability. Here, we report the synthesis of a novel form of Li4P2O7 that can be densified by cold-pressing and possesses an ion conductivity that is two orders of magnitude higher than conventional Li4P2O7 phases. The material is synthesized by a combination of microwave synthesis and chemical lithiation and adopts a nanostructured morphology with a small amorphous component. The material is electrochemically stable at voltages >5 V vs. Li+/Li, which suggests safe use with high-voltage cathodes. The newly-synthesized material is therefore a bulk, deformable analogue of LiPON, with comparable ion conductivity and phase stability. This research highlights the potential of using novel low-temperature synthetic routes to control the morphology and enhance the electrochemical performance of conventional functional materials

    Morphology-directed synthesis of LiFePO4 and LiCoPO4 from nanostructured Li1+2xPO3+x

    Get PDF
    A LiPO3-type nanostructure has been developed using a simple microwave approach at temperatures as low as 200 °C. This phase presents an ideal architecture for the morphology-directed synthesis of the olivine-type phases LiFePO4 and LiCoPO4, through a simple and scalable solution-based technique. Pure and carbon-composited olivine phases of interconnected nanoparticulate morphologies display excellent performance at high rates (up to 20 C) over 500 cycles in Li-ion battery cells

    Selective and facile synthesis of sodium sulfide and sodium disulfide polymorphs

    Get PDF
    Na2S and Na2S2 were selectively synthesized using a microwave-assisted thermal treatment of a Na+/S solution in tetraglyme between 100 and 200 °C, considerably lower than that of current routes. This novel synthetic pathway yields the Na2S phase in high purity and allows for good selectivity between the polymorphs of Na2S2 (α and β phases). These materials show promising electrochemical properties and are particularly interesting for the continued development of Na–S batteries

    Enhancement of the lithium ion conductivity of Ta-doped Li7La3Zr2O12 by incorporation of calcium

    Get PDF
    Fast ion conducting garnet materials have been identified as promising electrolytes for all solid-state batteries. However, reliable synthetic routes to materials with fully elucidated cation site occupancies where an enhancement in lithium conductivity is observed remains a challenge. Ca-Incorporation is developed here as a promising approach to enhance the ionic conductivity of garnet-type Li7-xLa3Zr2-xTaxO12phases. Here we present a new sol-gel synthetic strategy as a facile route to the preparation of materials of a desired stoichiometry optimized for Li+conductivity. We have found that the ionic conductivity of Li6.4La3Zr1.4Ta0.6O12is increased by a factor of four by the addition of 0.2 mol of Ca per formula unit. Ca is incorporated in the garnet lattice where it has no effect on the sinterability of the material and is predominately located at the La sites. We anticipate that the ease of our synthetic route and the phases presented here represents a starting point for the further realization of solid state electrolyte compositions with similarly high Li+conductivities using this methodology

    Liquid-phase approach to glass-microfiber-reinforced sulfide solid electrolytes for all-solid-state batteries

    Get PDF
    Deformable, fast-ion conducting sulfides enable the construction of bulk-type solid-state batteries that can compete with current Li-ion batteries in terms of energy density and scalability. One approach to optimizing the energy density of these cells is to minimize the size of the electrolyte layer by integrating the solid electrolyte in thin membranes. However, additive-free thin membranes, as well as many membranes based on preprepared scaffolds, are difficult to prepare or integrate in solid cells on a large scale. Here, we propose a scalable solution-based approach to produce bulk-type glass-microfiber-reinforced composites that restore the deformability of sulfide electrolytes and can easily be shaped into thin membranes by cold pressing. This approach supports both the ease of preparation and enhancement of the energy density of sulfide-based solid-state batteries

    In situ diffusion measurements of a NASICON-structured all-solid-state battery using muon spin relaxation

    Get PDF
    In situ muon spin relaxation is demonstrated as an emerging technique that can provide a volume-averaged local probe of the ionic diffusion processes occurring within electrochemical energy storage devices as a function of state of charge. Herein, we present work on the conceptually interesting NASICON-type all-solid-state battery LiM2(PO4)3, using M = Ti in the cathode, M = Zr in the electrolyte, and a Li metal anode. The pristine materials are studied individually and found to possess low ionic hopping activation energies of ∼50−60 meV and competitive Li+ self-diffusion coefficients of ∼10^–10–10^–9 cm2 s^–1 at 336 K. Lattice matching of the cathode and electrolyte crystal structures is employed for the all-solid-state battery to enhance Li+ diffusion between the components in an attempt to minimize interfacial resistance. The cell is examined by in situ muon spin relaxation, providing the first example of such ionic diffusion measurements. This technique presents an opportunity to the materials community to observe intrinsic ionic dynamics and electrochemical behavior simultaneously in a nondestructive manner

    The role of the reducible dopant in solid electrolyte–lithium metal interfaces

    Get PDF
    Garnet solid electrolytes, of the form Li7La3Zr2O12 (LLZO), remain an enticing prospect for solid-state batteries owing to their chemical and electrochemical stability in contact with metallic lithium. Dopants, often employed to stabilize the fast ion conducting cubic garnet phase, typically have no effect on the chemical stability of LLZO in contact with Li metal but have been found recently to impact the properties of the Li/garnet interface. For dopants more "reducible"than Zr (e.g., Nb and Ti), contradictory reports of either raised or reduced Li/garnet interfacial resistances have been attributed to the dopant. Here, we investigate the Li/LLZO interface in W-doped Li7La3Zr2O12 (LLZWO) to determine the influence of a "reducible"dopant on the electrochemical properties of the Li/garnet interface. Single-phase LLZWO is synthesized by a new sol-gel approach and densified by spark plasma sintering. Interrogating the resulting Li/LLZWO interface/interphase by impedance, muon spin relaxation and X-ray absorption spectroscopies uncover the significant impact of surface lithiation on electrochemical performance. Upon initial contact, an interfacial reaction occurs between LLZWO and Li metal, leading to the reduction of surface W6+ centers and an initial reduction of the Li/garnet interfacial resistance. Propagation of this surface reaction, driven by the high mobility of Li+ ions through the grain surfaces, thickens the resistive interphases throughout the material and impedes Li+ ion transport between the grains. The resulting high resistance accumulating in the system impedes cycling at high current densities. These insights shed light on the nature of lithiated interfaces in garnet solid electrolytes containing a reducible dopant where high Li+ ion mobility and the reducible nature of the dopant can significantly affect electrochemical performance

    Harnessing inter-disciplinary collaboration to improve emergency care in low- and middle-income countries (LMICs): results of research prioritisation setting exercise

    Get PDF
    Background More than half of deaths in low- and middle-income countries (LMICs) result from conditions that could be treated with emergency care - an integral component of universal health coverage (UHC) - through timely access to lifesaving interventions. Methods The World Health Organization (WHO) aims to extend UHC to a further 1 billion people by 2023, yet evidence supporting improved emergency care coverage is lacking. In this article, we explore four phases of a research prioritisation setting (RPS) exercise conducted by researchers and stakeholders from South Africa, Egypt, Nepal, Jamaica, Tanzania, Trinidad and Tobago, Tunisia, Colombia, Ethiopia, Iran, Jordan, Malaysia, South Korea and Phillipines, USA and UK as a key step in gathering evidence required by policy makers and practitioners for the strengthening of emergency care systems in limited-resource settings. Results The RPS proposed seven priority research questions addressing: identification of context-relevant emergency care indicators, barriers to effective emergency care; accuracy and impact of triage tools; potential quality improvement via registries; characteristics of people seeking emergency care; best practices for staff training and retention; and cost effectiveness of critical care – all within LMICs. Conclusions Convened by WHO and facilitated by the University of Sheffield, the Global Emergency Care Research Network project (GEM-CARN) brought together a coalition of 16 countries to identify research priorities for strengthening emergency care in LMICs. Our article further assesses the quality of the RPS exercise and reviews the current evidence supporting the identified priorities

    Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy

    Get PDF
    Background Copy number variants (CNVs) have been linked to neurodevelopmental disorders such as intellectual disability (ID), autism, epilepsy and psychiatric disease. There are few studies of CNVs in patients with both ID and epilepsy. Methods We evaluated the range of rare CNVs found in 80 Welsh patients with ID or developmental delay (DD), and childhood-onset epilepsy. We performed molecular cytogenetic testing by single nucleotide polymorphism array or microarray-based comparative genome hybridisation. Results 8.8 % (7/80) of the patients had at least one rare CNVs that was considered to be pathogenic or likely pathogenic. The CNVs involved known disease genes (EHMT1, MBD5 and SCN1A) and imbalances in genomic regions associated with neurodevelopmental disorders (16p11.2, 16p13.11 and 2q13). Prompted by the observation of two deletions disrupting SCN1A we undertook further testing of this gene in selected patients. This led to the identification of four pathogenic SCN1A mutations in our cohort. Conclusions We identified five rare de novo deletions and confirmed the clinical utility of array analysis in patients with ID/DD and childhood-onset epilepsy. This report adds to our clinical understanding of these rare genomic disorders and highlights SCN1A mutations as a cause of ID and epilepsy, which can easily be overlooked in adults
    • …
    corecore