4,202 research outputs found
Comparison of bulk milk antibody and youngstock serology screens for determining herd status for Bovine Viral Diarrhoea Virus
BACKGROUND: This paper examines the use of Bulk Milk antibody (BM Ab), Youngstock (YS) serology (Check Tests) and Bulk Milk PCR (BM PCR) for determining the presence or absence of animals persistently infected (PI) with Bovine Viral Diarrhoea Virus (BVDV) within a herd. Data is presented from 26 herds where average herd sizes were 343 and 98 animals for dairy and beef units respectively. Seventeen herds had sufficient data to analyse using Receiver Operating Characteristic (ROC) and probability curves enabling calculation of the sensitivity and specificity of BM Ab and YS Check tests for determining the presence of PI animals within herds in this dataset. RESULTS: Using BM Ab to screen a herd for the presence of PI animals, achieved a herd level sensitivity and specificity of 80.00 % (44.39–97.48 %) and 85.71 % (42.13–99.64 %) respectively (95 % confidence intervals quoted). Sensitivity and specificity of YS Check Tests at a cut off of 3/10 Ab positive YS were 81.82 % (48.22–97.72 %) and 66.67 % (22.28–95.67 %) respectively (95 % confidence interval). These results were achieved by comparing the screening tests to whole herd PI searches that took place 1–19 months after the initial screen with a mean interval of 8 months. Removal of this delay by taking BM samples on the day of a whole herd test and simulating a YS Check Test from the herd test data produced improvements in the reliability of the Check Tests. BM Ab sensitivity and specificity remained unchanged. However, the Check Test sensitivity and specificity improved to 90.9 % (58.72–99.77 %) and 100 % (54.07–100 %) respectively (95 % confidence interval) at a cut of off 2.5/10 Ab positive animals. Our limited BM PCR results identified 5/23 dairy farms with a positive BM PCR result; two contained milking PIs, two had non-milking PIs and another had no PIs identified. CONCLUSIONS: Delaying a PI search following an initial herd screen decreased the diagnostic accuracy and relevance of our results. With careful interpretation, longitudinal surveillance using a combination of the techniques discussed can successfully determine farm status and therefore allow changes in BVDV status to be detected early, thus enabling prompt action in the event of a BVDV incursion
One step multiderivative methods for first order ordinary differential equations
A family of one-step multiderivative methods based on Padé approximants to the exponential function is developed.
The methods are extrapolated and analysed for use in PECE mode.
Error constants and stability intervals are calculated and the combinations compared with well known linear multi-step combinations and combinations using high accuracy Newton-Cotes quadrature formulas as correctors.
w926020
Kinetics of four-wave mixing for a 2D magneto-plasma in strong magnetic fields
We investigate the femtosecond kinetics of an optically excited 2D
magneto-plasma at intermediate and high densities under a strong magnetic field
perpendicular to the quantum well (QW). We assume an additional weak lateral
confinement which lifts the degeneracy of the Landau levels partially. We
calculate the femtosecond dephasing and relaxation kinetics of the laser pulse
excited magneto-plasma due to bare Coulomb potential scattering, because
screening is under these conditions of minor importance. In particular the
time-resolved and time-integrated four-wave mixing (FWM) signals are calculated
by taking into account three Landau subbands in both the valance and the
conduction band assuming an electron-hole symmetry. The FWM signals exhibit
quantum beats mainly with twice the cyclotron frequency. Contrary to general
expectations, we find no pronounced slowing down of the dephasing with
increasing magnetic field. On the contrary, one obtains a decreasing dephasing
time because of the increase of the Coulomb matrix elements and the number of
states in a given Landau subband. In the situation when the loss of scattering
channels exceeds these increasing effects, one gets a slight increase at the
dephasing time. However, details of the strongly modulated scattering kinetics
depend sensitively on the detuning, the plasma density, and the spectral pulse
width relative to the cyclotron frequency.Comment: 13 pages, in RevTex format, 10 figures, Phys. Rev B in pres
Slowly varying envelope kinetic simulations of pulse amplification by Raman backscattering
A numerical code based on an eikonal formalism has been developed to simulate laser-plasma interactions, specifically Raman backscatter(RBS). In this code, the dominant laser modes are described by their wave envelopes, avoiding the need to resolve the laser frequency; appropriately time-averaged equations describe particle motion. The code is fully kinetic, and thus includes critical physics such as particle trapping and Landau damping which are beyond the scope of the commonly used fluid three-wave equations. The dominant forces on the particles are included: the ponderomotive force resulting from the beat wave of the forward and backscattered laser fields and the self-consistent plasma electric field. The code agrees well, in the appropriate regimes, with the results from three-wave equations and particle-in-cell simulations. The effects of plasma temperature on RBS amplification are studied. It is found that increasing the plasma temperature results in modification to particle trapping and the saturation of RBS, even before the onset of Landau damping of the plasma wave. This results in a reduction in the coupling efficiency compared to predictions based on the three-wave equations.open192
Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons
We study theoretically the ultrafast nonlinear optical response of quantum
well excitons in a perpendicular magnetic field. We show that for
magnetoexcitons confined to the lowest Landau levels, the third-order
four-wave-mixing (FWM) polarization is dominated by the exciton-exciton
interaction effects. For repulsive interactions, we identify two regimes in the
time-evolution of the optical polarization characterized by exponential and
{\em power law} decay of the FWM signal. We describe these regimes by deriving
an analytical solution for the memory kernel of the two-exciton wave-function
in strong magnetic field. For strong exciton-exciton interactions, the decay of
the FWM signal is governed by an antibound resonance with an
interaction-dependent decay rate. For weak interactions, the continuum of
exciton-exciton scattering states leads to a long tail of the time-integrated
FWM signal for negative time delays, which is described by the product of a
power law and a logarithmic factor. By combining this analytic solution with
numerical calculations, we study the crossover between the exponential and
non-exponential regimes as a function of magnetic field. For attractive
exciton-exciton interaction, we show that the time-evolution of the FWM signal
is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig
Dynamic buckling and fragmentation in brittle rods
We present experiments on the dynamic buckling and fragmentation of slender
rods axially impacted by a projectile. By combining the results of Saint-Venant
and elastic beam theory, we derive a preferred wavelength lambda for the
buckling instability, and experimentally verify the resulting scaling law for a
range of materials including teflon, dry pasta, glass, and steel. For brittle
materials, buckling leads to the fragmentation of the rod. Measured fragment
length distributions show two clear peaks near lambda/2 and lambda/4. The
non-monotonic nature of the distributions reflect the influence of the
deterministic buckling process on the more random fragmentation processes.Comment: 4 pages, 5 figures, submitted to Physical Review Letter
Effective Hamiltonian for Excitons with Spin Degrees of Freedom
Starting from the conventional electron-hole Hamiltonian , we
derive an effective Hamiltonian for excitons with
spin degrees of freedom. The Hamiltonian describes optical processes close to
the exciton resonance for the case of weak excitation. We show that
straightforward bosonization of does not give the correct form
of , which we obtain by a projection onto the subspace
spanned by the excitons. The resulting relaxation and renormalization
terms generate an interaction between excitons with opposite spin. Moreover,
exciton-exciton repulsive interaction is greatly reduced by the
renormalization. The agreement of the present theory with the experiment
supports the validity of the description of a fermionic system by bosonic
fields in two dimensions.Comment: 12 pages, no figures, RevTe
Electron-hole correlation effects in the emission of light from quantum wires
We present a self-consistent treatment of the electron-hole correlations in
optically excited quantum wires within the ladder approximation, and using a
contact potential interaction. The limitations of the ladder approximation to
the excitonic low-density region are largely overcome by the introduction of
higher order correlations through self consistency. We show relevance of these
correlations in the low-temperature emission, even for high density relevant in
lasing, when large gain replaces excitonic absorption.Comment: 4 paes 3 figure
- …