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(0) 

0,    Abstract

A  family  of  one-step  multiderivative  methods  based  on  Padé  approximants 

to   the  exponential   function   is  developed. 

The  methods   are   extrapolated   and   analysed   for  use   in PECE  mode. 

Error   constants   and   stability   intervals   are   calculated  and   the 

combinations   compared  with  well  known   l inear  multi-step   combinations 

and   combinations   using  high   accuracy  Newton-Cotes  quadrature   formulas 

as  correctors.  
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(1)  

1.      Introduction

Consider  a  real  first   order  system  of  ordinary  differential  equations 

of   order  N  given  by 

(0) 
~
y '(x)   =  ~f  (x, 

~
y )  ,   

~
y   ∈   EN

for  which  all   solutions   are  assumed  to  be  bounded.     In  the  particular 

case   of  the   l inear  initial   value  problem 

(1)                           
~
y ' (x)  =A

~
y (x)  ,    

~
y (x0) =    ,  

0~
y

where  A  is  a  square  matrix  of  order  N  with  constant  coefficients,   this 

means  that   the  real  parts   of  the  eigenvalues  of  A  must  be  non—positive. 

It   is  therefore  appropriate  to  consider  the   test  equation 

(2) y '   =  λy     (λ   <  0)  , y (x0)   =  y 0
and  to  seek,  the  solution  in  some   interval  X0   =  a  ≤   x ≤   b.      In  the  case 

of  a   single  equation  of   the   form   (0),    λ    takes  the  value  of   ∂f/∂y, 

estimated  at  each  step. 

A  family  of  one-step  multiderivative  methods  based  on  Padé     approximants 

to  the  exponential  function  will   be  developed.     Multiderivative    methods 

are  known  to  give  high  accuracy  when  used  to  solve  problems  for  which 

higher  derivatives  are  available   (see,   for  example,   Lambert   [3   ;   p.202]).  

The  principal  part  of  the   truncation  error  will   be  given  and  for  the 

twenty  four  members   of   the   family  quoted, intervals of absolute  stability 

will   be  given  ;    a  theorem  for  unconditional   stability  will   be  proved. 

The  family  will   be  seen  to  contain  five  well  known  methods. 

In  Section  4  the  methods  will  be  extrapolated  to  achieve  higher  accuracy 

and  in  Section  5  the  methods  will  be  employed  in  appropriate  predictor- 

corrector  pairs.      Intervals  of  absolute   stability,    which  are  seen  to  be 

small,    are   given   for  PECE  mode. 



(2) 

The  application  of   the  methods   to   the   heat   equation  and   to  first  order 

hyperbolic  equations  will   be   considered  in  two  future  papers,  

Multiderivative  methods   for   second  order  equations  will  also  be 

considered   in  a   future  paper. 



                (3) 

2.     Derivation  of  the  formulas 

Suppose  the  independent  variable  x  is  incremented  using  a  constant 

step  size  h  =  (b  -   a)/N  where  N  is  a  positive  integer,    then  the 

solution  of  equation  (2)  will   be  computed  at  the  points  x i   =   ih 

(i   =   1,2,. . . ,N). 

It   is  easy  to  show  that  the  solution  y(x)   satisfies  the  one-step 

relation 

(3) y(x  +  h)   -   eλh   y(x)   .  

Using  this  relation,  any  numerical  method will  determine  the  solution 

yn+1.(n  =  0,1,...,N-1)  whose  accuracy  will  depend  on  the  approximation 

to eλh   used  in  (3).Using the  (m, k)  Padé approximant  to  eλh  of  the  form 

eλh   ≃  Rm, k   (λh) =  P k  (λh)/Qm (λh)  +  0(hm+ k + 1)   ,  

where  p
k,Qm  are  polynomials  of  degree  k,m,  respectively,  defined  by 

(4)                      1)(θ0p;kθkk,p.....2θk2,pθk1,p1)(θkp ≡++++=  

and 
(5)                      1)(θ0Q;mθm,mqm1)(....2θ1,mqθ1,mq1)(θmQ ≡−+−+−=  

with  p1,k  . >  p2,k  . >   . . . >  pk,k   ,   >0  and  q1,m. >  q2,m  >  .. .  > qm,m  >  0 

 depending  on  the  chosen  Padé  approximant,   equation   (3)   takes  the  form 

n)ykhkλk1,p...2h2λk1,pλhk1,p(1

1n)ymhmλmm,qm1)(...2h2λm2,qλhm1,q(1(6)

++++=

+−+++−
 

or 
(m)

1nymhmm,q....1ny"2hm2,q1nhy'm1,q1ny ++++++−+  (7) 
 

.(k)
nykhkk,p....nhy"k2,pnhy'k1,pny ++++=  



(4) 

Equation   (7)   is   a  one-step  multiderivative   formula  which  is   explicit  

if   m =  0   (Taylor 's   series  of  order  k)   and  implicit    if   m ≠   0  ;  i t   is 

assumed  that  y(x)   is   sufficiently  often  differentiable  on  [a,b].  

The  non-zero   coefficients  of   (7)   for   the   family   of   algorithms   yielded 

by   the   first    twenty  four   entries   of   the  Padé  Table  for  the  exponential 

function   are   given  in  the  Appendix.      It  is   seen  that   the   methods  based 

on   the   (0,1),    (1,1)   and   (3,3)   Padé   approximants   are   respectively   the 

Euler    predictor ,     the    Euler   corrector    or   t rapezoidal   rule   and  Milne 's  

starting  procedure   (Milne  [7])   ;    the  methods  based  on  the   (k,k)   Padé 

approximants   (k  ≥   1)   are   one-step    Obrech koff  methods  and  are   given  for 

k  =   2,3,4   in,   for  example,   Lambert   [3   ;   p.47]   and  Lambert   and  Mitchell 

[4  :    Table I].  



            (5) 

3.    Analyses  of   the  methods

With  the  multiderivative  formula  (7)  may  be  associated  the  l inear 

difference  operator  L  defined  by 

.
k

1i
(x)(i)yihi,kp

m

1i
h)(x(i)yihi,mqm1)(y(x)h)y(xh]L[y(x);(8) ∑

=
−∑

−
+−+−+=  

Expanding  y(x+h)   and  its  derivatives   as  Taylor  series  about  x,   and 

collecting  terms,   gives 

(9) L[y(x);h]  -   C0y(x)  + C1hy' (x) + . . .+ Cthty( t )(x)  +….. 

where   the  Ct    are  constants.     The  operator  L  and  the  associated 

multiderivative  method   (7)   are  of  order  s   if   in   (9),  
C0  = C1  =  ....  =:  Cs    =  0  and  C s+1  .≠    0   ;   the  term  Cs+1   ..   is  the  principal 

part  of  the  truncation  error,   known  as  the  error  constant.      The  error 

constants  for  the  twenty  four  methods  to  be  considered  are  contained 

in  Table  I .  

The  multiderivative  formula  (2)   is  said  to  be  consistent  with  the 

differential  equation  if   the  order  s  ≥   1   ;    the  twenty-four  methods 

contained  in  the  appenix  are  clearly  consistent.  

Writing  (7)   in   the   form 

∑
= +

+−+∑
=

=−
+

m

1j
(j)

1nyjhj,mq1j1)((i)
nyih

k

1i i,kpny1ny(10)  

it   is  clear  that  the  multiderivative  methods  are  generated  by  the 

characteristic  polynomials 

(11) ρ  (r)   =  r-1   ,    σ i , k(r)   =  pi , k   ,   γ j , m(r)  =  (-1) j + 1
 rj,mq

(i  =  1,. . . . .k  ;   j   = , . . ,m).     The  polynomial  equation  ρ  (r)  =  0  has  only 

one  zero,   r   =   1,  and  the   twenty  four  consistent  multiderivative 

methods  are   therefore   zero-stable  and  thus  convergent.  



(6) 

The   interval   of   absolute  stability   of    equation    (7)    is  determined  by 

computing   the   interval   of  values  of  h  =  λh  for  which  the   zero  of  the 

stability   equation 

(12) π(r, h )   =  0 

is   less   than  unity   in  modulus,   where 

).h(
k

p)rh(mQ

,
k

1i
)ihi,kp(1

m

1j
)rjhj,mqj1)((1

,
k

1i

m

1j
(r)j,mγjh(r)i,kσihρ(r)h)π(r,(13)

−=

∑
=

+−∑
=

−+=

∑
=

∑
=

−−=

 

 

T h e  i n t e r v a l s  o f  a b s o l u t e  s t a b i l i t y  f o r  t h e  m u l t i d e r i v a t i v e  m e t h o d s  

b a s e d  o n  t h e  f i r s t  t w e n t y - f o u r  p a d é  a p p r o x i m a n t s  t o  t h e  e x p o n e n t i a l  

f u n c t i o n  a r e  c o n t a i n e d  i n  T a b l e  I  ( t h e  f i g u r e s  c o n t a i n i n g  a  d e c i m a l  

p o i n t   h a v e   b e e n   t r u n c a t e d   w i t h   t w o   d e c i m a l   p l a c e s ) .  

The  formulas  based  on   those   (m,k)   Padé   approximants  for  which  m  ≥   k 

are  seen  to   be  unconditionally   stable.     This   is   verified  by    the    following 

theorem  whose  proof  is  based  on  the  properties  of   the  coefficients 

Pi , k  ,q j , m (i   =   l , . . . ,k   ;    j    =   1, . . . ,m): 

Theorem: 

The  multiderivative  method   (7)   is   absolutely  stable  if   and  only  if  

m  ≥   k.  

Proof: 

 

Assume  m  ≥   k   ;   then the  coeff ic ients  in  the (m,k)   padé approximant  

 sa t isfy  q i , m   ≥   p i , m   ≥   0   for   a l l   i  =  1 ,  …,m (m,k odd or   even) .



(7) 

The  requirement    | r|<l   leads   to

1.m
hmm,qm1)(...

2
hm2,qhm1,q1

k
hkk,p...hk2,phk1,p1

1(14) <
−+−+−

++++
<−

The   left  hand   side   implies   the   requirement

0mhm,mqm1)(...1kh1,mkq1k1)(

kh)k,mqk1)(k,k(p...h)1,mq1,k(ph)1,mq1,k(p2

>−++
+

+
+−+

−+++−+−+
 

and, since  qi,,m   ≥  p.i,k ,  ≥  0 for m ≥ k (m,k  odd  or  even),   this   inequality 

is  satisfied  for  h   <  0.     The  right  hand  side  of   (14)   implies  the 

requirement 

0
m

hmm,qm1)(...
1k

h
m1,k

q1k1)(

k
h)

mk,
qk1)(

kk,
(p...2h)

m2,
q

k2,
(ph)

m1,
q

k1,
(p

<−−+
+

+
+−−

−−+++++
 

and  this   inequality   is   also   satisfied  for  h   <  0. 

The  multiderivative  method  given  by   (7)   is   thus   absolutely   stable   if 

m  ≥   k.  

If  m  <  k  the  method  has  only  a  finite  interval  of  absolute  stability  as 

il lustrated,   for  example,   by  the   (0,1)   method  which  is   the  Euler 

predictor  formula. 

The  hypothesis   of   the   theorem  is   thus  proved  (see  also   [1]   and   [2]   ) .  

The  methods  based  on  the   (k,k)   Padé  approximants  are  optimal in  that 

they  have  the  smallest  truncation  errors   ;    they   are   also  absolutely 

stable.     When  used  as   correctors   in PECE mode,  however,   they  give 

smaller  intervals  of  absolute  stability,  when  used  with  the   (0,ℓ) 

method  as  predictor  (ℓ  =  1,. . . ,k),    than  the  methods  with m <  k.    This 

will  be  dealt  with  more  fully  in  Section  5. 



(8) 
 

 
 
Table I:   Stability  intervals  and principal error terms of  the 
                one-step multiderivative formulas 
   
 

 
Method 
(Padé) 

Stability 
interval 

 error 
constant 

(0,1)      ∈h (-2,0)  C2 = 1/2

(1,1) ∈h  (-∞ ,0)  C3 = -1/ l 2

(1,0) ∈h  (-∞ ,0  C2 = -½ 

(0,2) ∈h  (-2,0)  C3 = ½ 

(1,2)  ∈h  (-6,0)  C4 = -1/7 2

(2,2) ∈h  (-∞ ,0)  C5 = 1/7 2 0

(2,1) ∈h  (-∞ ,0)  C4 = 1/7 2

(2,0) ∈h  (-∞ ,0)  C3 = 1/6

(0,3) ∈h  (-2.51,0)  C4, = 1/2 4

(1,3) ∈h  (-5.41,0)  C5 = -1/4 8 0

(2,3) ∈h  (-11.84,0) C6 = 1/7 2 0 0

(3,3) ∈h  (-∞ ,0)  C7 = -1/1 0 0 8 0 0

(3,2) ∈h  (-∞ .0)  C6 = -1/7 2 0 0

(3,1) ∈h  (-∞ ,0)  C5 = -1/4 8 0

(3,0)  ∈h  (-∞ ,0)  C4 = -1/2 4

(0,4) ∈h  (-2.78,0)  C5 = 1/1 2 0

(1,4)  ∈h  (-5.43,0)  C6 = -1/3 6 0 0

(2,4) ∈h  (-9.64, 0)  C7 = 1/7 5 6 0 0

(3,4)  ∈h  (-19.15,0) C8 = 1/1 4 1 1 2 0 0

(4,4) ∈h  (-∞ ,0)  C9 = 1/2 5 4 0 1 6 0 0

(4,3)  ∈h  (-∞ ,0)  C8 = 1/1 4 1 1 2 0 0

(4,2) ∈h (-∞ ,0)  C7 = 1/7 5 6 0 0

(4,1) ∈h  (-∞ ,0)  C6 = 1/3 6 0 0

(4,0) ∈h  (-∞ ,0)  C5 = 1/ l 2 0

                    
 
 
 
 
 



(9) 

4.    Extrapolation  of  the  methods

Applying  equation   (3)   over  two  single  intervals    h    and  replacing  e2λh  

by,   for  example,   i ts   (1,1)  Padé  approximant,   gives 

).60(h(x)(v)y5h8
5(x)(iv)y4h(x)''y'3h2

3(x)y"22h(x)2hy'y(x)

)60(h)y(x)5h5λ8
54h4λ3h3λ2

32h22λh2λ(1

y(x)1λh)2
1(1λh)2

1(11λh)2
1(1λh)2

1(12h)y(x(15)

++++++=

++++++=

−++−++=+

 

 
Alternatively  if    equation   (3)   is  written  over  a  double   interval  2h,y(x+2h) 

is  given  by 

 

(16)     y(x+2h)  =   (1+λh)(l-λh)-1y(x) 

=   (l+2λh+2λ2h2+2λ3h3+2λ4h4+2λ5h5)y(x)+0(h6) 

     = y(x)+2hy'(x)+2h2y"(x)+2h3y"’(x)+2h4y(iv)(x)+2h5y(v)(x)+0(h6). 

The   Maclaurin  expansion    of   y(x+2h)   about    x  produces 

(17) 
),100(h(ix)y9h2835

4(x)(viii)y8h315
2(x)(vii)y7h315

8(x)(vi)y6h45
4

(v)y5h15
4(x)(iv)y4h3

2(x)'y"3h3
4(x)y"22h(x)2hy'y(x)2h)y(x

++++

++++++=+
 

and    defining    the  values   of   y(x+2h)    yielded   by   (15)  and  (16)   to  be   (1)
2ny

+

and   respectively  .it  is   seen  that   neither   is  0(h(2)
2ny

+
3)accrate. 

However, defining  by (E)
2ny

+

                                     )2(
23

1)1(
23

4(E)
2ny +−+=+ nyny  

gives 

(18)     5h)0((x)(iv)y4h3
2(x)'y"3h3

4(x)y"22h(x)2hy'y(x)(E)
2ny +++++=+

 

The   error   in , defined   by   y(x+2h) - (E)
2ny +

(E)
2ny +   has  principal  part  E5 = .10

1     

The  second  order  method  based  on  the  (1,1)  Padé  approximant  has  been 

extrapolated  to  give  fourth  order  accuracy   (see  also  Lindberg  [6])  by 

the  Richardson  technique. 

 

 



(10) 

Repeating   the process  for  the (3,3)  Padé method (Milne's method [7])  
leads to   

and

).100(h(x)(ix)y9h3375
14(x)(viii)y8h225

2(x)(vii)y7h75
2(x)(vi)y6h45

4

(x)(v)y5h15
4(x)(iv)y4h3

2(x)'y"3h3
4(x)y"22h(x)2hy'y(x)

)y(x)3h3λ15
12h2λ5

2λh(1)3h3λ15
12h2λ5

2λh(1(2)
1ny

).100(h(x)(ix)y9h144000
209(x)(viii)y8h3600

23(x)(vii)y7h2400
61(x)(vi)y6h45

4

(x)(v)y5h15
4(x)(iv)y4h3

2(x)'y"3h3
4(x)y"22h(x)2hy'y(x)

+++++

+++++=

−+−+++≡+

+++++

+++++=

y(x)2]1-)3h3λ120
12h2λ10

1λh
2
1(1)3h3λ120

12h2λ10
1λh

2
1[(1(1)

1ny −+−+++≡+

 

 
Defining  ,   in  this   case ,   by (E)

2ny
+ 

(2)
2ny63

1(1)
2ny63

64(E)
2ny(19)

+
−

+
=

+
 

gives 

),100(h(ix)y9h425250
599(x)(viii)y8h315

2(x)(vii)y7h315
8(x)(vi)y6h45

4

(x).(v)y5h15
4(x)(iv)y4h3

2(x)'y"3h3
4(x)y"22h(x)2hy'y(x)(E)

2ny

++++

+++++=
+  

 
which,  on  comparison  with  equation  (17),   is  seen  to  be  eighth  order 

accurate  with .
425250

1
9E =   I t   is  clear  that  as  m  and  k  increase,the 

algebraic  manipulation  involved  in  the  extrapolation  procedure  becomes 

tedious  and  difficult .  

In  the  cases  of  the  methods  based  on  the   (1,1)   and   (3,3)  Padé approximants 

the  extrapolation  procedure  has  produced  two  extra  orders  of  accuracy. 

This  phenomenon  is  a  useful  feature  of  multiderivative  methods  based 

on   (m,m)   Padé   approximants,   which   is  not  evident   in  methods  based  on 

(m,k)   Padé  approximants   (m  ≠   k)   for  which  only   a  single   extra  order  of 

accuracy   is  produced. 



(11) 
The  extrapolating  formulas   connecting  ,2ny(E)

+
(1)

2ny + and (2)
2ny + satisfy   one 

Of  the  relations 

)32m0(h1)2m)/(2(2)
2ny(1)

2ny2m(2(E)
2ny(21)

ork,mwhen

)2km0(h1)km)/(2(2)
2ny(1)

2nykm(2(E)
2ny(20)

++−+−+=+

≠

+++−+
+−+

+=+
 

 when  m.  =   k.       The  extrapolation  formlas   for   the   twenty-four 

multiderivative   methods   outlined   in  Section  2,    together   with   the 

error   constants,     the   principal    parts  of   their   local   truncation   errors.  

defined  for  each  method  by 

(22)                                       ,(E)
2ny2h)y(x +−+  

are   contained   in  Table   II. 

It  is   easy  to   see   that (E)
2ny +   may   also  be  written   in  the  form  

k.m);32m0(hny
h)2λ(mP

h)(2λmP
2

h)λ(mP
h)(λmP2m2

12m2

1(E)
2ny(24)

or

km);2km0(hny
h)(2λmQ

h)(2λkP2

h)(λmQ

h)(λkPkm2
1km2

1(E)
2ny(23)

=++
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

=+

≠+++
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛+
−+=+

 

Each  of   (23)   and   (24)   is   of   the   approximate   form 

nRy~(E)
2ny +  

and   clearly   the   interval   of   absolute   stability  for   each  multiderivative 

method   is   the  range   of   values   of  h =  λh  for  which 

(25) |  R  |     < 1. 

The  intervals  of  absolute   stability  for  equations   (20)   and   (21),   the 

extrapolated  forms   of  equation   (7),    are   thus  determined  by  finding   the 

range  of  values  of  h   for  which 



(12) 

(26)      (-2m+ k+l)[Qm( h )]2Qm(2 h )  <2m+ k[Pk( h )]2Qm(2 h )  -  Pk(2 h )[Qm( h )]2

<(2m+ k-l)Qm( h )]2Qm(2 h ) 

when  m  ≠   k,    or 

(27)      (-22 m+l)[Pm(- h )]2Pm(-2 h )<22 m[Pm ( h )]2Pm (-2 h )-Pm (2 h )[Pm(- h )]2

 

<  (22 m-l)[Pm (- h )]2pm (-2 h ) 

when  m  =  k, 

Thus,   for  example,   the   interval  of  absolute  stability  for  the 

extrapolated   form  of   the  method  based  on  the   (1,1)   Padé   approximant,   is 

the  interval  of  values  of  h   for  which 

(28) -12  +24 h  -   15 h 2  + 3 h 3 < 12  -   9 h 2  -   5 h 3 < 12  -   24 h   +15 h 2  -   3 h 3 ,  

where  fractions  have  been  cleared.     The  left   hand  side  of   (28)   is 

satisfied  for  all   h  <0  while  the  right  hand  side  is  satisfied  only  for 

the  interval  h   ∈    (-11.53,0),   which  is   therefore  the   interval  of  absolute 

stability.  

Clearly,   as  m  and  k  increase,the  algebraic  manipulation  involved  in 

solving  (26)   or   (27)   becomes  complicated.     The  interval  of  absolute 

stability  of   the  extrapolated  form  of   the  multiderivative  method  based 

on   the   (3,3)   padé   approximant,   for  example,   is   found  by  solving   the 

inequality 

(29) -13608000   +  27216000 h   -  25174800 h 2  +   14061600 h 3  -  5193720 h 4 

+ 1315440 h 5  -  229257 h 6  +  26649 h 7  -   1840 h 8  +  63 h 9

< 13608000  -  2041200 h 2  +  204120 h 4  -  27783 h 6  -  8775 h 7 

-1134 h 8  -  65 h 9 

< 13608000  -  27216000 h  +  25174800 h 2  -   14061600 h 3  +  5193720 h 4 

-1315440 h 5  +   229257 h 6  -   26649 h 7   +   1840 h 8  -  63 h 9 , 
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where,   again,   fractions  have  been  cleared.     Both   sides  of   (29)   are 

satisfied  for  all   h < 0   and   the  interval   of   absolute  stability   is   there- 

fore  h   ∈    (-∞ ,0) • 

The   intervals   of   absolute  stability   for   the  extrapolated  forms   of  all  

twenty   four  multiderivative  methods   derived  in  Section  2  are  also 

contained   in  Table   II .       I t   must  be  noted  that,    whilst    extrapolation  has 

improved  accuracy,   this  has  often  been  at  the  expense  of  a  decreased 

interval   of  absolute  stability.     This   is  particularly  so  with   the   (0,1) 

and   (1,1)   Padé   methods  which   are,   of  course,   the   Euler  predictor 

formula  and   the  Euler   corrector   formula   (the   trapezoidal   rule) 

respectively.      The  extrapolated   form  of   the   (1,1)   method  does   not 

satisfy  Theorem  1   which,   therefore,   does  not  hold  for  the   extrapolation 

formulas. 

The   extrapolated  forms   of  the   twenty  four  multiderivative  methods  were 

tested  on  the  initial  value  problem 

y'  =  -y    ;     y(0)  =  1. 

In  each  case were and    computed  from  the  appropriate   binomial (1)
2ny +

(2)
2ny +

expansions   of  the  forms   (15)   and   (16)   and (E)
2ny + was   then  computed  from 

the   appropriate  extrapolation   formula   (20)   or   (21)    ;    the   error  was 

calculated   from  the  relevant  equation  of   the  form   (22).     The  numerical 

results  for  the  multiderivative  methods,  before  extrapolation, were 

computed   from   the   appropriate   equations   of   the   form   (6)   and   the   errors 

calculated  from  (22). 

The   step  size  h  was  given  the  values  0.05,0.1,0.2  and  the   errors   for 

all   methods  were   found   to  be  as   indicated  in  the  theory.     The  numerical 

results  at  x  =   0.4,0.8   for  the  methods  based  on  the   (1,1)   and   (3,3)   Padé 

approximants,    whose  error   constants   and   stability   intervals   in 
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extrapolated  form  have  been  considered  in  detail   above,   are  given  in 

Table  III  to  two   significant   figures.
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Table   II   :   The   extrapolating  algorithms 

Method Extrapolating 
(Padé) algorithm 

Stability 
interval 

error 
constant  

(0,1) 2y(1)-y(2)
∈h  

(-1,0) E3 = 4/3

(1,1) 

(1,0) 

(4y(1)-y(2))/3 

2y(1)-y(2)
∈h   
∈h

(-11 .53,0) 
(-∞,0) 

E5 

E3

= 
= 

1/10 

4/3

(0,2) (4y(1)-y(2))/3 ∈h  
(-2.57,0) E4 = -1/3

(1,2) 
(2,2) 

(8y(1)-y(2)),7 

(16y(1)-y(2))/15 
∈h
∈h

(-6.47,0) 
 

(-∞,0) 
E5 

E7

= 

= 

-8/945 

-1/1890

(2,1) (8y(1)-y(2))/7 ∈h  (-∞,0) E5 = -8/945

(2,0) (4y(1)-y(2))/3 ∈h  
(-∞,0) E4 = -1/3

(0,3) (8y(1)-y(2))/7 ∈h  
(-2.02,0) E5 = 8/105

(1,3) (16y(1)-y(2))/15 ∈h  
(-6.20,0) E6 = -1/540

(2,3) 
(3,3) 

(32y(1)-y(2))/31 
(64y(1)-y(2))/63 

∈h  
∈h

(-11.44,0) 
(-∞,0) 

E7 

E9

= 
 

= 

4/5425 
 

1/425250

(3,2) (32y(1)-y(2))/31 ∈h  
(-∞,0) E7 = 4/5425

(3,1) (16y(1)-y(2))/15 ∈h  (-∞,0) E6 = 1/540

(3,0) (8y(1)-y(2))/7 ∈h  
(-∞,0) E5 = 8/l05

(0,4) (16y(1)-y(2))/15 ∈h  
(-3.23,0) E6 = 2/135

(1.4) (32y(1)-y(2))/31 ∈h  (-12.30,0) E7 = 8/27125

(2,4) (64y(1)-y(2))/63 ∈h (-9.62,0) E8 = -1079/l27575

(3,4) (128y(1)-y(2))/127 ∈h  
(-7.98,0) E9 = 93341/88211025

(4,4) (256y(1)-y(2))/255 ∈h  (-∞,0) E11 = -1/144317250

(4,3) (128y(1)-y(2))/127 ∈h  (-∞,0) E9 = 93341/88211025

(4,2) (64y(1)-y(2))/63 ∈h  (-∞,0) E8 = 1079/l27575

(4,1) (32y(1)-y(2))/31 ∈h  (-∞,0) E7 = 8/2712 5

(4,0) (16y(1)-y(2))/15 ∈h  (-∞,0) E6 = -2/135
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Table  III     :          Error  moduli  at  x  =  0.4,0.8   with    h  =  0.05,0.1,0.2,   for 

the   initial  value  problem  y'   =  y   ;    y(0)   =   1   using  the 

methods  based  on  the   (1,1)   and  (3,3)   Padé  approximants 

and  their  extrapolated  forms. 
 

x 0.4 0.8 

h 0.05                 0.1               0.2 0.05             0.1                0.2 

Method Error  moduli Error  moduli 

(1.1) 
Extrapolated 

(1.1) 

0.60(-4)     0.26(-3)     0.12(-2) 
 
0.73(-7)     0.15(-5)     0 .27(-4)  

0.81(-4)     0.35(-3)     0.16(-2) 
 
0.10(-6)     0.20(-5)     0.36(-4) 

(3,3) 
Extrapolated 

(3.3) 

0.28(-7)     0.92(-8)     0.13(-7) 
 
0.99(-9)     0.10(-9)     0.17(-8) 

0.48(-7)     0.12(-7)     0.22(-7) 
 
0.13(-8)     0.13(-8)     0.70(-9) 

Theoretical   solutions   :   y(0.4)   ≃  0.67      ,     y(0,8) ≃    0.45. 
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5.     Use  in PECE  mode

In  this  section  the   (0,1),   (0,2),   (0,3),   (0,4)   explicit  formulas  will  be 

used  as  predictor  formulas  and  all  appropriate  combinations  of  these 

four  formulas  with  the  twenty  implicit  formulas  of  Section  2  as  correctors 

will  be  considered.    Predictor-corrector  methods  for  which  the  order  of 

the  predictor  exceeds  that  of  the  corrector  will  not  be  constructed. 

Using  the  general   (0,k*)  Padé  approximant  as  predictor,   the  characteristic 

polynomials   (from  (11))   are 

*ki,p(r)*
*ki,σ,1r(r)*ρ(30) =−=

 

where  the  convention  of  associating  an  asterisk with  the  predictor  has 

been  adopted.     Using  the   (m,k)  Padé approximant  (m  ≠   0)  as  corrector,  

the  characteristic  polynomials  (11)  become 

 

P(r)  =  r-1   ,  σi,k.  (r)  =  pi,k.   ,   ( i - l , . . . ,k)    ,  y.j,m   (r)  =  (-1)j+1    q.j,m     r  (j = l,... ,m). 

This  combination  of  predictor  and  corrector  will   be  denoted  by 

(0,k*);(m,k).  

The  stability  polynomial  for  the   (0,k*)   ;    (m,k)  predictor-corrector 

combination  in PECE  mode   is  therefore 
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and   the   interval  of  absolute  stability   is   the   range  of  values  of  h  for 

which  the  zero  r   of 

(32)                                     0)h(r,PECEπ =  

is   less   than  unity   in  modulus.   

Solving  equation  (32)   for  r   gives 

(33)                                   )
2s

h0(
1s

h1sTher
+

+
+

+−=  

where   s   is   the   order   of   the  predictor-corrector  combination   (0,k*)    ;    (m,k). 

The   term  Ts + 1   is   the  error   constant   of   the   predictor-corrector  combination. 

The   intervals   of  absolute   stability   and   the  error  constants   are  contained 

in  Tables   IV,   V,   VI,   and  VII  for   the  predictor-corrector  combinations 

using,   respectively,   the   (0,1),    (0,2),    (0,3),    (0,4)   Padé  methods   as 

predictors.      All  possible  combinations  of   these  explicit   predictors  with 

the  other  twenty implicit  methods used as correctors,  for  which   the   order 

of   the  predictor  does  not  exceed   that  of   the  corrector,    are  included  in 

the  tables. 

It    is  easy  to   see   that  for  all   four  predictors,    using   the   (1,4)   method 

as   corrector   gives   the  greatest   interval  of  absolute  stability  as  well  as 

the  smallest error  modulus ;  in  the  case  of  the   (0,3)   ;    (1,3) combination, 

one derivative   fewer  is required in the corrector than  in  the   (0,3)   ;    (1,4) 

combination for  the same accuracy  and  the same interval of  absolute 

stability.  

For  all    four   (0,k)   predictors.   k  =   1,2,3,4,   i t    is   seen   that  the   (0,k)   ;  

(k,0)   predictor-corrector  combination  gives  the  worst  error  in PECE   mode 

and  the  smallest  interval  of  absolute  stability,   except   that  the   (0,2)   ;  

(4,0)   combination  has  a  slightly  smaller  stability  interval  than  the 

(0,2); (2,0) combination. This  latter  combination  does,   however,   have 
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a  better  principal  error  term  and  requires   lower  order  derivatives. 

The   l i terature   contains   l i t t le  on   the  size  of   stability   intervals   for 

one-step  multiderivative  methods  used  in PECE  mode.     They  have  been 

verified  in  this  paper   to  be  generally   small,    and  examination  of  Tables 

IV,   V,   VI,   VII   shows   surprisingly  that  the  greatest   stability  intervals 

in PECE  mode  arise  with  correctors  based  on   (1,k)   formulas  which  them- 

selves  have  poor   stability  intervals   (Table  I) .       I t   can  be  deduced  from 

Tables  IV,  V,  VI,  VII  that  as   (m,k)   correctors   (m  =   l , . . . ,k),   with 

increasing  individual  stability  intervals,    are  used  with  a  given 

predictor,    the   stability   intervals   in PECE  mode  decrease.   It    can  also 

be  deduced  that   the    absolutely  stable  implicit   methods   of   Section  2 

have   inferior   intervals  of  stability  to  those  methods  with  finite 

stability  intervals  when  used  as   correctors  with  any  given   (0,k)   predictor.  

Comparisons with the  Milne-Simpson and  Adams-Bashforth-Moulton  combinations 

show  that  the  results   of   this   section  can  give  much  bigger   stability 

intervals   than  multi-step  methods  with   the  same  order  of  accuracy. 

Comparisons  with  the  results  of  Lawson  and  Ehle  [5]   show  that  one-step 

multiderivative  methods  can  also   give  comparable  accuracy  to  that   of 

one-step  methods  which  use  high  accuracy  Newton-Cotes  quadrature 

formulas   as   correctors,   but   can  simultaneously  give  bigger   stability 

intervals.    The  use  of   a   combination  such  as   (0,4)  ;  (1,5)   for  instance, 

would  give the same overall   accuracy as the  method  of  Lawson  and  Ehle [5] 

but  would  have  a  stability   interval  bigger  than  ∈h    (-3.21,0),    the 

stability  interval   for  the   (0,4)   ;    (1,4)   combination  which  has   accuracy 

one power fewer than the  method f  Lawson  and  Ehle[5];   the  method  of 

Lawson  and  Ehle   [5]  has  stability  interval  ∈h    (-2.07,0).  

The  multiderivate  methods  in PECE  mode  were  tested  on  the   initial  value 

problem y'   =  -y   ;   y(0)   =   1. 
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The  step   size  h  was  given  the  values  0.5,   1.0,   2.0,   3.0,   and  the 

solution  computed  at  x  =  0.0(h)6.0.     The   numerical  results  obtained 

conformed   fully  to  the   indications  of  the   theory   ;    that   is,    as  h 

increased  and  h   went   outside   the   interval   of   absolute  stability,   the 

error  moduli  grew  quickly  and  soon  swamped  the  theoretical   solution. 

It   is  noted  that,    for  the   (0,4)   ;    (4,0)   combination,  whose  stability 

interval   ∈h    (-2,0)   requires  h  to  be   in  the  interval   0   <  h   <   2.0,   the 

error  modulus   for  h  =  20   falls   initially   and  then  begins   to   rise  as  x 

increases. 

The  numerical   results  for  the   (0,k)   ;    (k,0)   and   (0,k)   ;    (1,4) 

combinations   (k  =   1,2,3,4),   which,   for  each  predictor  give  the  poorest 

and  best   results  from  the  points   of  view  of   accuracy  and  stability 

interval,    are  given  in  Table  VIII.  
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Table  IV     :   Intervals   of   absolute   stability  and  principal   error  terms 

           of  the  correctors  used  with  the   (0 t  1)   predictor.  
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Corrector Stability 
interval 

error 
constant 

(1,1) ∈h  (-2,0) T3  = 1/6

(1,0) ∈h  (-1,0) T3  =  -1/2

(1,2) ∈h  (-2,0) T3  =1/6

(2,2) ∈h (-1.58,0) T3  = 1/4

(2,1) ∈h  (-1.37,0) T3  =1/3

(2,0) ∈h  (-1,0) T3  = 2/3

(1,3) ∈h  (-2.53,0) T3   = 1/8

(2,3) ∈h  (-1.78,0) T3   = 1/5

(3,3) ∈h  (-1.54,0) T3   = 1/4

(3,2) ∈h (-1.39,0) T3  = 3/l0

(3,1) ∈h  (-1.22,0) T3  = 3/8

(3,0) ∈h  (-1.00,0) T3  = 1/2

(1,4) ∈h  (-2.61,0) T3   =1/10

(2,4) ∈h (-2.02,0) T3   =1/6

(3,4) ∈h  (-1.67,0) T3  = 3/14

(4,4) ∈h  (-1.52,0) T3  = ¼ 
(4,3) ∈h (-1.41,0) T3  = 2/7

(4,2) ∈h (-1.29,0) T3  = 1/3

(4,1) ∈h  (-1. 16,0) T3  =4/5

(4,0) ∈h  (-1.00,0) T3  = 1/2



Table  V     :      Intervals of  absolute  stability  and  principal  error  terms 

  of the correctors used with the(0.2)predictor 

                   Corrector               stability             error 
   interval              constant  
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Table  VI     :     Intervals  of  absolute  stability  and  principal  error  terms 

                                  of   the  correctors  used  with  the   (0,3)   predictor. 
 

(1,1) ∈h      (-2.0)   T3      = -1/12

(1,2) ∈h  (-2.51,0) T4 = 1/24

(2,2) ∈h  (-2,0) T4 = 1/12

(2,1) ∈h  (-1.79,0) T4 = 1/8

(2,0) ∈h  (-1.61,0) T3 = 1/6

(1,3) ∈h  (-2.51,0) T4 = 1/24

(2,3) ∈h  (-2.13,0) T4 = 1/15

(3,3) ∈h  (-1.94,0) T4 = 1/12

(3,2) ∈h  (-1.82,0) T4 = 1/10

(3,1) ∈h  (-1.67,0) T4 = 1/8

(3,0) ∈h  (-1.50,0) T4 = 1/8

(1.4) ∈h  (-2.78,0) T4 = 1/30

(2,4) ∈h  (-2.26,0) T4 = 1/l8

(3,4) ∈h  (-2.05,0) T4 = 1/14

(4,4) ∈h  (-1.92,0) T4 = 1/12

(4,3) ∈h  (-1.84,0) T4 = 2/21

(4,2) ∈h  (-1.74,0) T4 = 1/9

(4,1) ∈h  (-1.61,0) T4 = 2/15

(4,0) ∈h (-1.47,0) T4 = 1/6



                            Corrector             stability    error 
 interval       constant 

(1.2) h  ∈ (-2.38,0) T4 = -1/72

(2,2) h  ∈ (-2.13,0) T5 = 1/45

(2,1) h  ∈ (-2,0) T4 = 1/72

(1,3) h  ∈ (-2.79,0) T5 = 1/120

(2,3) h  ∈ (-2.28,0) T5 = 1/60

(3,3) h  ∈ (-2.09,0) T5 = 1/48

(3,2) h  ∈ (-1.97,0) T5 = 1/40

(3,1) h  ∈ (-1.84,0) T5 = 7/240

(3,0) h  ∈ (-1.59,0) T4 = 1/8

(1,4) h  ∈ (-2.79,0) T5 = 1/120

(2,4) h  ∈ (-2.40,0) T5 = 1/72

(3,4) h  ∈ (-2.19,0) T5 = 17/l050

(4,4) h  ∈ (-2.07,0) T5 = 1/48

(4,3) h  ∈ (-1.99,0) T5 = 1/42

(4,2) h  ∈ (-1.92,0) T5 = 1/36

(4,1) h  ∈ (-1.76,0) T5 = 
1/30

(4,0) h  ∈ (-1.59,0) T5 = 1/12
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Table VII  :  Intervals of absolute stability and principal error terms 
of the correctors used with the (0,4) predictor. 

 



Corrector Stability 
interval 

error 
constant 

(2,2)          ∈h  (-2.54,0) T5 = 1/720

(1,3) 
(2,3) 
(3,3) 
(3,2) 
(3,1) 

∈h  (-2.92,0) 
∈h  (-2.65,0) 
∈h  (-2.48,0) 
∈h  (-2.37,0) 
∈h  (-2.21,0) 

T5 = -1/480 
T6 = 1/248 
T6 = 1/240 
T6 = 7/1440 
T5 = -1/480

(1,4) 
(2,4) 
(3,4) 
(4,4) 
(4,3) 
(4,2) 
(4,1) 
(4,0) 

∈h  (-3.21,0) 
∈h  (-2.76,0) 
∈h  (-2.57,0) 
∈h  (-2.45,0) 
∈h  (-2.37,0) 
∈h  (-2.27,0) 
∈h  (-2.15,0) 
∈h  (-2,0) 

T6 = 1/720

T6 = 1/360

T6 = 1/280 

T6 – 1/240 

T6 = 1/80 

T6 – 1/44 

T5 – 1/120
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Table  VIII:    Error   moduli    at     x=2.0 ,3.0 ,4.0 ,6.0  with    h=0.5 ,1.0, 2.0, 
                   3.0  using   the   (0,k)    ;     (k,0)   and   (0,k)   ;   (1,4)   predictor- 
                   corrector   combinations   (    k  =   1,2,3,4)   to  solve   the 
                   initial  value  problem  y'   =  -y   ;    y(0)   =   1. 
 

 h 

0.5                      1.0                      2.0                      3.0 
Predictor Corrector x 

Error  moduli 
(0,1) (1,0) 2.0 

3.0 
4.0 
6.0 

0.11                0.14                  0.29(+1)                     -  
0.75(-l)           0.95                       -                       0.70(+1) 
0.44(-l)           0.10(+1)           0.70(+1)                     -  
0.13(-1)          0.30(+1)           0  .27(+2)              0.32(+2) 

 (1,4) 2.0 
3.0 
4.0 
6.0 

0.98(-2)          0.60(-1)           0.46                             - 
0.55(-2)          0.37(-1)                 -                       0.13(+1) 
0.27(-2)          0.20(-1)           0.34                             - 
0.58(-3)          0.49(-2)           0.21                        0.19(+1) 

(0,2) (2,0) 2.0 
3.0 
4.0 
6.0 

0.26(-2)          0.73(-1)           0.31(+1)                       - 
0.14(-2)          0.34(-1)                -                         0.18(+2) 
0.70(-3)          0.14(-1)           0.90(+1)                       - 
0. 14(-3)         0.22(-2)           0.27(+2)                  0.32(+3) 

 (1,4) 2.0 
3.0 
4.0 
6.0 

0.16(-2)          0.19(-1)           0.34                              - 
0.90(-3)          0.99(-2)                 -                        0.14(+1) 
0.44(-3)          0.47(-2)           0.22(-1)                        - 
0.89(-4)          0.89(-3)           0.10(-1)                   0.18(+1) 

(0,3) (3,0) 2.0 
3.0 
4.0 
6.0 

0.30(-2)          0.62(-1)           0.26(+1)                       - 
0.16(-2)          0.38(-1)                 -                        0.25(+2) 
0.81(-3)          0.21(-1)           0.77(+l)                        - 
0.17(-3)          0.52(-2)           0.21(+2)                  0.63(+3) 

 (1.4) 2.0 
3.0 
4.0 
6.0 

0.21(-3)          0.53(-2)           0.20                              - 
0.12(-3)          0.29(-2)                 -                        0.13(+1) 
0.58(-4)          0.15(-2)           0.93(-1)                        - 
0.12(-4)          0.30(-3)           0.35(-1)                   0.19(+1) 

(0.4) (4,0) 2.0 
3.0 
4.0 
6.0 

0.15(-4)          0.62(-2)           0.11(4+1)                      - 
0.81 (-5)         0.34(-2)                -                          0.20(+2) 
0.40(-5)          0.16(-2)           0.98                               - 
0.80 (-6)         0.32 (-3)          0. 10(+1)                  0.41 (+3) 

 (1.4) 2.0 
3.0 
4.0 
6.0 

0.18(-4)          0.89(-3)           0.69(-1)                         - 
0.10(-4)          0.49(-3)                -                          0.70 
0.49(-5)          0.24(-3)           0.14(-1)                         - 
0.99(-6)          0.49(-4)           0.22(-2)                    0.42 

x Theoretical 
solution 

2.0  
3.0  
4.0  
6.0   

0.14. 
0.50(-1) 
0.18(-1) 
0.25(-2) 
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6.     Summary

A  family  of  l inear,   one-step,  multiderivate  methods,  based  on  Padé  

approximants  to  the  exponential  function,   has  been  developed   in  this 

paper.     The  family  is  seen  to  contain  a  number  of  well  known  methods 

including  the  Euler  predictor,    the  Euler  corrector   (the  trapezoidal  rule) 

and  a  formula  due  to  Milne   [7].      It   has  been  verified  that,    using 

comparable  steplengths,  much  higher  accuracy  can  be  obtained  using  the 

family  of  one-step  multiderivative  methods  than  can  be  achieved  using 

linear  one-step  methods.     The  family  of  multiderivative  methods   is 

therefore  appropriate  for  use  in  problems  which  allow  higher  derivatives 

to  be   found  explicitly  and  which  require  high  accuracy.      Intervals  of 

absolute  stability  have  been  calculated   and  i t    is   seen  that   those 

members  of  the   family  which  are   fully   implicit ,    in   the   sense   that   the 

highest  derivative  must  be  evaluated  at   the  advanced  point,    are 

absolutely  stable. 

The   family  of  multiderivative  methods   is  extrapolated  to  achieve  higher 

accuracy  and   intervals  of  absolute   stability  are  calculated  for  the 

exprapolation  formulas.      I t    is   seen  that,    whilst   extrapolation  increases 

accuracy,   stability   intervals   are   sometimes   shortened  as   a  consequence   ;  

the  most  notable  example   of  this   is   the   trapezoidal  rule. 

Finally,   the  family  of   one-step  multiderivative  methods   are  used   in 

appropriate  predictor-corrector  pairs.      Error   constants   and  stability 

intervals  are  calculated  for PECE mode.     As  with  l inear  multistep 

(single  derivative)  methods  used  in PECE  mode,   the  stability  intervals 

are  seen  to  be   somewhat  low.  It   is  clear  from Tables  IV,   V,  VI,  VII,  

however,   that  i t   is  possible  to  achieve  a  bigger    stability  interval,     with 

comparable  accuracy,   using  one—step  multiderivative  combinations   in PECE 

mode  than  with  some  well  known  multi-step  combinations,   notably  the 
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Milne-Simpson  and  Adams-Bashforth-Moulton  methods,  or  with one-step 

methods  using  high  accuracy  Newton-Cotes  quadrature  formulas   as 

correctors.  
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