72,614 research outputs found

    Helicopter Anti-Torque System Using Strakes

    Get PDF
    A helicopter is disclosed with a system for controlling main-rotor torque which reduces the power and size requirements of conventional anti-torque means. The torque countering forces are generated by disrupting the main rotor downwash flowing around the fuselage. The downwash flow is separated from the fuselage surface by a strake positioned at a specified location on the fuselage. This location is determined by the particular helicopter wash pattern and fuselage configuration, generally being located between 20 deg before top dead center (TDC) and 80 deg from TDC on the fuselage side to which the main rotor blade approaches during rotation. The strake extends along the fuselage from the cabin section to the aft end and can be continuous or separated for aerodynamic surfaces such as a horizontal stabilizer

    Analytical infrared intensities for periodic systems with local basis sets

    Full text link
    We report a method for the efficient evaluation of analytic infrared (IR) intensities within generalized Kohn-Sham density functional theory using Gaussian orbitals and periodic boundary conditions. A discretized form of the Berry phase is used to evaluate a periodic dipole moment and its derivatives with respect to in-phase nuclear coordinate displacements. Benchmark calculations are presented for one-dimensional chains of water molecules and poly(paraphenylenevinylene).Comment: 16 pages, 3 figures, 4 tables, submitted to Phys. Rev.

    Universal scaling behavior at the upper critical dimension of non-equilibrium continuous phase transitions

    Full text link
    In this work we analyze the universal scaling functions and the critical exponents at the upper critical dimension of a continuous phase transition. The consideration of the universal scaling behavior yields a decisive check of the value of the upper critical dimension. We apply our method to a non-equilibrium continuous phase transition. But focusing on the equation of state of the phase transition it is easy to extend our analysis to all equilibrium and non-equilibrium phase transitions observed numerically or experimentally.Comment: 4 pages, 3 figure

    Sensitivity of an image plate system in the XUV (60 eV < E < 900 eV)

    Full text link
    Phosphor imaging plates (IPs) have been calibrated and proven useful for quantitative x-ray imaging in the 1 to over 1000 keV energy range. In this paper we report on calibration measurements made at XUV energies in the 60 to 900 eV energy range using beamline 6.3.2 at the Advanced Light Source at Lawrence Berkeley National Laboratory. We measured a sensitivity of ~25 plus or minus 15 counts/pJ over the stated energy range which is compatible with the sensitivity of Si photodiodes that are used for time-resolved measurements. Our measurements at 900 eV are consistent with the measurements made by Meadowcroft et al. at ~1 keV.Comment: 7 pages, 2 figure

    The metaphysics of Machian frame-dragging

    Get PDF
    The paper investigates the kind of dependence relation that best portrays Machian frame-dragging in general relativity. The question is tricky because frame-dragging relates local inertial frames to distant distributions of matter in a time-independent way, thus establishing some sort of non-local link between the two. For this reason, a plain causal interpretation of frame-dragging faces huge challenges. The paper will shed light on the issue by using a generalized structural equation model analysis in terms of manipulationist counterfactuals recently applied in the context of metaphysical enquiry by Schaffer (2016) and Wilson (2017). The verdict of the analysis will be that frame-dragging is best understood in terms of a novel type of dependence relation that is half-way between causation and grounding

    The Ah receptor: adaptive metabolism, ligand diversity, and the xenokine model

    Get PDF
    Author Posting. © American Chemical Society, 2020. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Chemical Research in Toxicology, 33(4), (2020): 860-879, doi:10.1021/acs.chemrestox.9b00476.The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins (“dioxins”), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.This review is dedicated in memory of the career of Alan Poland, one of the truly great minds in pharmacology and toxicology. This work was supported by the National Institutes of Health Grants R35-ES028377, T32-ES007015, P30-CA014520, P42-ES007381, and U01-ES1026127, The UW SciMed GRS Program, and The Morgridge Foundation. The authors would like to thank Catherine Stanley of UW Media Solutions for her artwork

    The Classical Relativistic Quark Model in the Rest-Frame Wigner-Covariant Coulomb Gauge

    Get PDF
    The system of N scalar particles with Grassmann-valued color charges plus the color SU(3) Yang-Mills field is reformulated on spacelike hypersurfaces. The Dirac observables are found and the physical invariant mass of the system in the Wigner-covariant rest-frame instant form of dynamics (covariant Coulomb gauge) is given. From the reduced Hamilton equations we extract the second order equations of motion both for the reduced transverse color field and the particles. Then, we study this relativistic scalar quark model, deduced from the classical QCD Lagrangian and with the color field present, in the N=2 (meson) case. A special form of the requirement of having only color singlets, suited for a field-independent quark model, produces a ``pseudoclassical asymptotic freedom" and a regularization of the quark self-energy.Comment: 81 pages, RevTe
    • …
    corecore