2,068 research outputs found

    Integrals of motion and the shape of the attractor for the Lorenz model

    Full text link
    In this paper, we consider three-dimensional dynamical systems, as for example the Lorenz model. For these systems, we introduce a method for obtaining families of two-dimensional surfaces such that trajectories cross each surface of the family in the same direction. For obtaining these surfaces, we are guided by the integrals of motion that exist for particular values of the parameters of the system. Nonetheless families of surfaces are obtained for arbitrary values of these parameters. Only a bounded region of the phase space is not filled by these surfaces. The global attractor of the system must be contained in this region. In this way, we obtain information on the shape and location of the global attractor. These results are more restrictive than similar bounds that have been recently found by the method of Lyapunov functions.Comment: 17 pages,12 figures. PACS numbers : 05.45.+b / 02.30.Hq Accepted for publication in Physics Letters A. e-mails : [email protected] & [email protected]

    The Equity of Public Education Funding in Georgia, 1988-1996

    Get PDF
    A study of the effect of Quality Basic Education on the level of equity of public education funding in Georgia

    Variational bounds on the energy dissipation rate in body-forced shear flow

    Full text link
    A new variational problem for upper bounds on the rate of energy dissipation in body-forced shear flows is formulated by including a balance parameter in the derivation from the Navier-Stokes equations. The resulting min-max problem is investigated computationally, producing new estimates that quantitatively improve previously obtained rigorous bounds. The results are compared with data from direct numerical simulations.Comment: 15 pages, 7 figure

    On the contribution of the benthos to pelagic production

    Get PDF
    Annual production and consumption of oxygen were compared in large outdoor mesocosms differing only in the presence or absence of an intact benthic community and associated sediments. Both daily apparent production and nighttime respiration of oxygen were greater in tanks with a benthos. The fluxes of oxygen into, and dissolved inorganic nitrogen out of the bottom were also greater in tanks with an intact benthos. In tanks with a benthos, calculated gross system production increased 33% relative to tanks lacking a benthos. Depending on assumed O:N ratios only 45–60% of this increase was attributable to differences in the flux of inorganic nitrogen from the benthos to the water column. Nearly 40% was evidently fueled by higher rates of recycling in the water column. Between 3 and 17% of the difference in production could not be attributed to either source. The benthos apparently affects production in the water column not only by supplying nutrients directly, but also by enhancing rates of pelagic recycling

    Phase space dynamics of overdamped quantum systems

    Full text link
    The phase space dynamics of dissipative quantum systems in strongly condensed phase is considered. Based on the exact path integral approach it is shown that the Wigner transform of the reduced density matrix obeys a time evolution equation of Fokker-Planck type valid from high down to very low temperatures. The effect of quantum fluctuations is discussed and the accuracy of these findings is tested against exact data for a harmonic system.Comment: 7 pages, 2 figures, to appear in Euro. Phys. Let

    Variational bound on energy dissipation in turbulent shear flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in plane Couette flow, bridging the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits structure, namely a pronounced minimum at intermediate Reynolds numbers, and recovers the Busse bound in the asymptotic regime. The most notable feature is a bifurcation of the minimizing wavenumbers, giving rise to simple scaling of the optimized variational parameters, and of the upper bound, with the Reynolds number.Comment: 4 pages, RevTeX, 5 postscript figures are available as one .tar.gz file from [email protected]

    Fuel quality/processing study. Volume 4: On site processing studies

    Get PDF
    Fuel treated at the turbine and the turbine exhaust gas processed at the turbine site are studied. Fuel treatments protect the turbine from contaminants or impurities either in the upgrading fuel as produced or picked up by the fuel during normal transportation. Exhaust gas treatments provide for the reduction of NOx and SOx to environmentally acceptable levels. The impact of fuel quality upon turbine maintenance and deterioration is considered. On site costs include not only the fuel treatment costs as such, but also incremental costs incurred by the turbine operator if a turbine fuel of low quality is not acceptably upgraded

    Transcription factor search for a DNA promoter in a three-states model

    Full text link
    To ensure fast gene activation, Transcription Factors (TF) use a mechanism known as facilitated diffusion to find their DNA promoter site. Here we analyze such a process where a TF alternates between 3D and 1D diffusion. In the latter (TF bound to the DNA), the TF further switches between a fast translocation state dominated by interaction with the DNA backbone, and a slow examination state where interaction with DNA base pairs is predominant. We derive a new formula for the mean search time, and show that it is faster and less sensitive to the binding energy fluctuations compared to the case of a single sliding state. We find that for an optimal search, the time spent bound to the DNA is larger compared to the 3D time in the nucleus, in agreement with recent experimental data. Our results further suggest that modifying switching via phosphorylation or methylation of the TF or the DNA can efficiently regulate transcription.Comment: 4 pages, 3 figure

    Variational bound on energy dissipation in plane Couette flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in turbulent plane Couette flow. Using the compound matrix technique in order to reformulate this principle's spectral constraint, we derive a system of equations that is amenable to numerical treatment in the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits a minimum at intermediate Reynolds numbers, and reproduces the Busse bound in the asymptotic regime. As a consequence of a bifurcation of the minimizing wavenumbers, there exist two length scales that determine the optimal upper bound: the effective width of the variational profile's boundary segments, and the extension of their flat interior part.Comment: 22 pages, RevTeX, 11 postscript figures are available as one uuencoded .tar.gz file from [email protected]
    corecore