research

Transcription factor search for a DNA promoter in a three-states model

Abstract

To ensure fast gene activation, Transcription Factors (TF) use a mechanism known as facilitated diffusion to find their DNA promoter site. Here we analyze such a process where a TF alternates between 3D and 1D diffusion. In the latter (TF bound to the DNA), the TF further switches between a fast translocation state dominated by interaction with the DNA backbone, and a slow examination state where interaction with DNA base pairs is predominant. We derive a new formula for the mean search time, and show that it is faster and less sensitive to the binding energy fluctuations compared to the case of a single sliding state. We find that for an optimal search, the time spent bound to the DNA is larger compared to the 3D time in the nucleus, in agreement with recent experimental data. Our results further suggest that modifying switching via phosphorylation or methylation of the TF or the DNA can efficiently regulate transcription.Comment: 4 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions