58 research outputs found

    Phylogenetic relationships of the New World titi monkeys (Callicebus): First appraisal of taxonomy based on molecular evidence

    Get PDF
    Background: Titi monkeys, Callicebus, comprise the most species-rich primate genus-34 species are currently recognised, five of them described since 2005. The lack of molecular data for titi monkeys has meant that little is known of their phylogenetic relationships and divergence times. To clarify their evolutionary history, we assembled a large molecular dataset by sequencing 20 nuclear and two mitochondrial loci for 15 species, including representatives from all recognised species groups. Phylogenetic relationships were inferred using concatenated maximum likelihood and Bayesian analyses, allowing us to evaluate the current taxonomic hypothesis for the genus. Results: Our results show four distinct Callicebus clades, for the most part concordant with the currently recognised morphological species-groups-the torquatus group, the personatus group, the donacophilus group, and the moloch group. The cupreus and moloch groups are not monophyletic, and all species of the formerly recognized cupreus group are reassigned to the moloch group. Two of the major divergence events are dated to the Miocene. The torquatus group, the oldest radiation, diverged c. 11 Ma; and the Atlantic forest personatus group split from the ancestor of all donacophilus and moloch species at 9-8 Ma. There is little molecular evidence for the separation of Callicebus caligatus and C. dubius, and we suggest that C. dubius should be considered a junior synonym of a polymorphic C. caligatus. Conclusions: Considering molecular, morphological and biogeographic evidence, we propose a new genus level taxonomy for titi monkeys: Cheracebus n. gen. in the Orinoco, Negro and upper Amazon basins (torquatus group), Callicebus Thomas, 1903, in the Atlantic Forest (personatus group), and Plecturocebus n. gen. in the Amazon basin and Chaco region (donacophilus and moloch groups). © 2016 Byrne et al

    Terrestrial behavior in titi monkeys (Callicebus, Cheracebus, and Plecturocebus) : potential correlates, patterns, and differences between genera

    Get PDF
    For arboreal primates, ground use may increase dispersal opportunities, tolerance to habitat change, access to ground-based resources, and resilience to human disturbances, and so has conservation implications. We collated published and unpublished data from 86 studies across 65 localities to assess titi monkey (Callicebinae) terrestriality. We examined whether the frequency of terrestrial activity correlated with study duration (a proxy for sampling effort), rainfall level (a proxy for food availability seasonality), and forest height (a proxy for vertical niche dimension). Terrestrial activity was recorded frequently for Callicebus and Plecturocebus spp., but rarely for Cheracebus spp. Terrestrial resting, anti-predator behavior, geophagy, and playing frequencies in Callicebus and Plecturocebus spp., but feeding and moving differed. Callicebus spp. often ate or searched for new leaves terrestrially. Plecturocebus spp. descended primarily to ingest terrestrial invertebrates and soil. Study duration correlated positively and rainfall level negatively with terrestrial activity. Though differences in sampling effort and methods limited comparisons and interpretation, overall, titi monkeys commonly engaged in a variety of terrestrial activities. Terrestrial behavior in Callicebus and Plecturocebus capacities may bolster resistance to habitat fragmentation. However, it is uncertain if the low frequency of terrestriality recorded for Cheracebus spp. is a genus-specific trait associated with a more basal phylogenetic position, or because studies of this genus occurred in pristine habitats. Observations of terrestrial behavior increased with increasing sampling effort and decreasing food availability. Overall, we found a high frequency of terrestrial behavior in titi monkeys, unlike that observed in other pitheciids

    Multilevel societies in new world primates? Flexibility may characterize the organization of Peruvian red uakaris (Cacajao calvus ucayalii)

    Get PDF
    Researchers have described multilevel societies with one-male, multifemale units (OMUs) forming within a larger group in several catarrhine species, but not in platyrhines. OMUs in multilevel societies are associated with extremely large group sizes, often with >100 individuals, and the only platyrhine genus that forms groups of this size is Cacajao. We review available evidence for multilevel organization and the formation of OMUs in groups of Cacajao, and test predictions for the frequency distribution patterns of male–male and male–female interindividual distances within groups of red-faced uakaris (Cacajao calvus ucayalii), comparing year-round data with those collected at the peak of the breeding season, when group cohesion may be more pronounced. Groups of Cacajao fission and fuse, forming subgroup sizes at frequencies consistent with an OMU organization. In Cacajao calvus ucayalii and Cacajao calvus calvus, bachelor groups are also observed, a characteristic of several catarrhine species that form OMUs. However, researchers have observed both multimale–multifemale groups and groups with a single male and multiple females in Cacajao calvus. The frequency distributions of interindividual distances for male–male and male–female dyads are consistent with an OMU-based organization, but alternative interpretations of these data are possible. The distribution of interindividual distances collected during the peak breeding season differed from those collected year-round, indicating seasonal changes in the spatial organization of Cacajao calvus ucayalii. We suggest a high degree of flexibility may characterize the social organization of Cacajao calvus ucayalii, which may form OMUs under certain conditions. Further studies with identifiable individuals, thus far not possible in Cacajao, are required to confirm the social organization.Publisher PDFPeer reviewe
    corecore