29,679 research outputs found
Entanglement and spin squeezing properties for three bosons in two modes
We discuss the canonical form for a pure state of three identical bosons in
two modes, and classify its entanglement correlation into two types, the
analogous GHZ and the W types as well known in a system of three
distinguishable qubits. We have performed a detailed study of two important
entanglement measures for such a system, the concurrence and the
triple entanglement measure . We have also calculated explicitly the spin
squeezing parameter and the result shows that the W state is the most
``anti-squeezing'' state, for which the spin squeezing parameter cannot be
regarded as an entanglement measure.Comment: 7 pages, 6 figures; corrected figure sequence. Thanks to Dr. Han P
Wearable Sensor Data Based Human Activity Recognition using Machine Learning: A new approach
Recent years have witnessed the rapid development of human activity
recognition (HAR) based on wearable sensor data. One can find many practical
applications in this area, especially in the field of health care. Many machine
learning algorithms such as Decision Trees, Support Vector Machine, Naive
Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in
HAR. Although these methods are fast and easy for implementation, they still
have some limitations due to poor performance in a number of situations. In
this paper, we propose a novel method based on the ensemble learning to boost
the performance of these machine learning methods for HAR
Semileptonic Decays to and in Bethe-Salpeter Method
Using the relativistic Bethe-Salpeter method, the electron energy spectrum
and the semileptonic decay widths of and
are calculated. We obtained large branching
ratios, and , which can be easily detected in the future
experiment.Comment: 3 pages, 3 figures
Statistical Topography of Glassy Interfaces
Statistical topography of two-dimensional interfaces in the presence of
quenched disorder is studied utilizing combinatorial optimization algorithms.
Finite-size scaling is used to measure geometrical exponents associated with
contour loops and fully packed loops. We find that contour-loop exponents
depend on the type of disorder (periodic ``vs'' non-periodic) and they satisfy
scaling relations characteristic of self-affine rough surfaces. Fully packed
loops on the other hand are unaffected by disorder with geometrical exponents
that take on their pure values.Comment: 4 pages, REVTEX, 4 figures included. Further information can be
obtained from [email protected]
Spectral Representation for the Effective Macroscopic Response of a Polycrystal: Application to Third-Order Nonlinear Susceptibility
Erratum:
In our paper, we show that the spectral representation for isotropic
two-component composites also applies to uniaxial polycrystals. We have learned
that this result was, in fact, first conjectured by G.W. Milton. While our
derivation is more detailed, our result for the spectral function is the same
as Milton's. We very much regret not having been aware of this work at the time
of writing our paper.
Original abstract:
We extend the spectral theory used for the calculation of the effective
linear response functions of composites to the case of a polycrystalline
material with uniaxially anisotropic microscopic symmetry. As an application,
we combine these results with a nonlinear decoupling approximation as modified
by Ma et al., to calculate the third-order nonlinear optical susceptibility of
a uniaxial polycrystal, assuming that the effective dielectric function of the
polycrystal can be calculated within the effective-medium approximation.Comment: v2 includes erratum and the original preprin
Coherent control at its most fundamental: CEP-dependent electron localization in photodissoziation of a H2+ molecular ion beam target
Measurements and calculations of the absolute carrier-envelope phase (CEP)
effects in the photodissociation of the simplest molecule, H2+, with a 4.5-fs
Ti:Sapphire laser pulse at intensities up to (4 +- 2)x10^14 Watt/cm^2 are
presented. Localization of the electron with respect to the two nuclei (during
the dissociation process) is controlled via the CEP of the ultra-short laser
pulses. In contrast to previous CEP-dependent experiments with neutral
molecules, the dissociation of the molecular ions is not preceded by a
photoionization process, which strongly influences the CEP dependence.
Kinematically complete data is obtained by time- and position-resolved
coincidence detection. The phase dependence is determined by a single-shot
phase measurement correlated to the detection of the dissoziation fragments.
The experimental results show quantitative agreement with ab inito 3D-TDSE
calculations that include nuclear vibration and rotation.Comment: new version includes minore changes and adding the supp_material.pd
Metastatic model of HPV+ oropharyngeal squamous cell carcinoma demonstrates heterogeneity in tumor metastasis
Human papillomavirus induced (HPV+) cancer incidence is rapidly rising, comprising 60–80% of oropharyngeal squamous cell carcinomas (OPSCCs); while rare, recurrent/metastatic disease accounts for nearly all related deaths. An in vivo pre-clinical model for these invasive cancers is necessary for testing new therapies. We characterize an immune competent recurrent/metastatic HPV+ murine model of OPSSC which consists of four lung metastatic (MLM) cell lines isolated from an animal with HPV+ OPSCC that failed cisplatin/radiation treatment. These individual metastatic clonal cell lines were tested to verify their origin (parental transgene expression and define their physiological properties: proliferation, metastatic potential, heterogeneity and sensitivity/resistance to cisplatin and radiation. All MLMs retain expression of parental HPV16 E6 and E7 and degrade P53 yet are heterogeneous from one another and from the parental cell line as defined by Illumina expression microarray. Consistent with this, reverse phase protein array defines differences in protein expression/activation between MLMs as well as the parental line. While in vitro growth rates of MLMs are slower than the parental line, in vivo growth of MLM clones is greatly enhanced. Moreover, in vivo resistance to standard therapies is dramatically increased in 3 of the 4 MLMs. Lymphatic and/or lung metastasis occurs 100% of the time in one MLM line. This recurrent/metastatic model of HPV+ OPSCC retains the characteristics evident in refractory human disease (heterogeneity, resistance to therapy, metastasis in lymph nodes/lungs) thus serving as an ideal translational system to test novel therapeutics. Moreover, this system may provide insights into the molecular mechanisms of metastasis
Near-field interaction between domain walls in adjacent Permalloy nanowires
The magnetostatic interaction between two oppositely charged transverse
domain walls (DWs)in adjacent Permalloy nanowires is experimentally
demonstrated. The dependence of the pinning strength on wire separation is
investigated for distances between 13 and 125 nm, and depinning fields up to 93
Oe are measured. The results can be described fully by considering the
interaction between the full complex distribution of magnetic charge within
rigid, isolated DWs. This suggests the DW internal structure is not appreciably
disturbed by the pinning potential, and that they remain rigid although the
pinning strength is significant. This work demonstrates the possibility of
non-contact DW trapping without DW perturbation and full continuous flexibility
of the pinning potential type and strength. The consequence of the interaction
on DW based data storage schemes is evaluated.Comment: 4 pages, 4 figures, 1 page supplimentary material (supporting.ps
- …