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CENSORED QUANTILE REGRESSION

WITH VARYING COEFFICIENTS

Guosheng Yin1, Donglin Zeng2, and Hui Li3

The University of Hong Kong1

The University of North Carolina at Chapel Hill2

Beijing Normal University3

Abstract: We propose a varying-coefficient quantile regression model for survival

data subject to random censoring. Motivated by the work of Yang (1999), quantile-

based moments are constructed using covariate-weighted empirical cumulative haz-

ard functions. We estimate regression parameters based on the generalized method

of moments. The proposed estimators are shown to be consistent and asymptoti-

cally normal. We examine the proposed method with finite sample sizes through

simulation studies, and illustrate it with a Richter’s syndrome study.

Key words and phrases: Generalized method of moments, local polynomial, regres-

sion quantiles, semiparametric models, random censoring, survival data.

1 Introduction

The median survival time is often used as a summary statistic to characterize

patient survival. In contrast to the mean survival time, the median is more

robust to outliers or extreme observations. The linear regression, also known

as the accelerated failure time model, is a mean-based regression approach to

covariate analysis. It formulates a linear model between the logarithm of the

failure time T and covariates Z in the form

log(T ) = βT
0 Z+ ε. (1.1)

If the distribution of the error ε is not specified, model (1.1) is semiparamet-

ric, for which estimation methods are typically based on the least squares or

rank estimators (Buckley and James (1979); Tsiatis (1990); Wei, Ying, and Lin

(1990); and Jin et al. (2003)). The mean-based regression model quantifies the
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2 GUOSHENG YIN, DONGLIN ZENG, and HUI LI

central effects of covariates, but may not capture the full distributional impact

of covariates with heterogeneous effects. By contrast, when a properly chosen

set of quantiles is modeled simultaneously, we can obtain a global assessment

of covariate effects (Koenker and Bassett (1978); Koenker (2005)). In quantile

regression, the model parameters are estimated by minimizing a quantile-based

objective function. The corresponding variances are typically estimated through

resampling methods to avoid nonparametric functional estimation of the error’s

density function (Parzen, Wei, and Ying (1994); Horowitz (1998); Bilias, Chen,

and Ying (2000); Jin, Ying, and Wei (2001); and He and Hu (2002)). Yu, Lu,

and Stander (2003) provided a general coverage of various applications of quantile

regression.

Censored quantile regression, particularly the so-called Tobit model, has

been investigated for fixed-censoring data (Powell, (1984); Buchinsky and Hahn

(1998)). For random censoring cases, Ying, Jung, and Wei (1995) proposed quan-

tile regression for randomly censored failure time data under the assumption of

independence between covariates and censoring. Lindgren (1997) studied gener-

alized L1 minimization under censored quantile regression. Yang (1999) derived

an estimating equation approach to censored median regression based on the

covariate-weighted cumulative hazard function. Portnoy (2003) relaxed the inde-

pendence condition between covariates and censoring times for censored quantile

regression by redistributing weights of censored data to the right. Peng and

Huang (2008) developed an estimation method for censored quantile regression

based on martingale properties and minimization of a sequence of L1-type convex

functions. Wang and Wang (2009) proposed redistributing the censored data to

the right by using the local Kaplan-Meier estimator. Based on conditional mo-

ment inequalities, Khan and Tamer (2009) further relaxed model assumptions in

quantile regression.

On the other hand, varying-coefficient models characterize the trends of

covariate effects over time or some exposure variable (Hastie and Tibishirani

(1993)), while limited research has been conducted in quantile regression with

varying coefficients. Yu and Jones (1998) proposed nonparametric regression

quantiles using kernel weighted local linear fitting. Honda (2004) studied the lo-

cal L1 estimation with varying coefficients through local polynomial expansions.
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Kim (2007) proposed spline-based quantile regression and a Rao-score model fit

test in contrast to linear quantile regression. Cai and Xu (2008) investigated

dynamic quantile estimation for time series data. Neocleous and Portnoy (2009)

studied partially linear censored quantile regression with B-splines. Qian and

Peng (2010) developed censored quantile regression by incorporating partially

functional effects.

By extending the work of Yang (1999), we propose a varying-coefficient quan-

tile regression method with randomly censored survival data. We take a local

polynomial expansion (Fan and Gijbels (1996)), and incorporate a kernel func-

tion to the empirical cumulative hazard function. The quantile-based estimating

equations can be viewed as moment conditions in the generalized method of mo-

ments (GMM) framework (Hansen (1982); Hansen, Heaton, and Yaron (1996)).

In contrast to likelihood-based approaches, the moments of quantile regression

can be constructed in a relatively straightforward way, and we can combine the

available moments and minimize the GMM objective function to estimate regres-

sion quantiles.

The rest of this article is organized as follows. In Section 2, we propose the

estimation procedure under the censored varying-coefficient quantile regression

model. In Section 3, we establish the consistency and asymptotic normality

of the parameter estimates. We examine the finite sample properties of the

proposed method using simulation studies in Section 4, and illustrate it with a

Richter’s syndrome study in Section 5. We give concluding remarks in Section 6

and delineate the proofs of the theorems in the supplementary material on the

journal’s website.

2 Varying-coefficient Quantile Regression

Let Ti be the failure time, and let Ci be the censoring time for the ith subject,

i = 1, . . . , n. The associated covariates are denoted by a p-vector Zi and a scalar

Wi (an exposure variable that may interact with Zi in a nonlinear way). We

observe Xi = min(Ti, Ci), and the censoring indicator ∆i = I(Ti ≤ Ci), where

I(·) is the indicator function. We assume that Ti is conditionally independent

of Ci given the covariates, and (Xi,∆i,Zi,Wi) are independent and identically
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4 GUOSHENG YIN, DONGLIN ZENG, and HUI LI

distributed (i.i.d.).

Let qτ (·|Zi,Wi) be the conditional τ -quantile function given covariates Zi and

Wi, for 0 < τ < 1. To accommodate nonlinear interactions between covariates,

we propose the varying-coefficient quantile regression model in the form

qτ (log(Ti)|Zi,Wi) = βτ (Wi)
TZi, (2.1)

where the first component of Zi is 1 corresponding to the main effect of Wi.

The error term is ϵi = log(Ti) − βτ (Wi)
TZi, so qτ (ϵi|Zi,Wi) = 0. We assume

independence between ϵi and Zi, while ϵi may depend on Wi; this allows for

possibly heteroscedastic errors to some extent.

Let W denote the support of the exposure variable W . By Taylor’s series

expansion, for each chosen w0 ∈ W we have that

βτ (w) ≈ βτ (w0) + β[1]
τ (w0)(w − w0) + · · ·+ β[r]

τ (w0)(w − w0)
r,

where

β[k]
τ (w0) =

1

k!

∂kβτ (w)

∂wk

∣∣∣
w0

, k = 1, . . . , r.

We reparameterize with

ξτ (w0) = {βτ (w0)
T ,β[1]

τ (w0)
T , . . . ,β[r]

τ (w0)
T }T ,

Z∗
i = {ZT

i ,Z
T
i (Wi − w0), . . . ,Z

T
i (Wi − w0)

r}T .

Let K(·) be a kernel density function, hn be a bandwidth, and Khn(·) =

K(·/hn). After the local polynomial expansion, we can compute the τ -quantile

residuals

ei(ξ) = log(Xi)− ξτ (w0)
TZ∗

i .

For notational brevity, we drop the dependence of ξτ (w0) on w0 and τ whenever

doing so causes no ambiguity. Using the jth covariate as a weight, the local

empirical cumulative hazard function is

Λ̂j(t, ξ) =
∑

ei(ξ)≤t

Khn(Wi − w0)Z
∗
i,j∆i∑n

k=1Khn(Wk − w0)Z∗
k,jI(ek(ξ) ≥ ei(ξ))

,

where Z∗
i,j is the jth component of Z∗

i , j = 1, . . . , (r + 1)p. The τ -quantile
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estimating equations can be constructed as

Λ̂j(0, ξ) = − log(1− τ), j = 1, . . . , (r + 1)p.

This leads to (r + 1)p moment conditions that can be concatenated as

Un(ξ) = n−1
n∑

i=1

ui(ξ),

where

ui(ξ) =



nKhn(Wi − w0)Z
∗
i,1∆iI(ei(ξ) ≤ 0)∑n

j=1Khn(Wj − w0)Z∗
j,1I(ej(ξ) ≥ ei(ξ))

+ log(1− τ)

...
nKhn(Wi − w0)Z

∗
i,(r+1)p∆iI(ei(ξ) ≤ 0)∑n

j=1Khn(Wj − w0)Z∗
j,(r+1)pI(ej(ξ) ≥ ei(ξ))

+ log(1− τ)

 .

In the GMM framework (Hansen (1982)), ξτ (w0) is estimated by minimizing the

weighted quadratic function

Qn(ξ) = Un(ξ)
TΩn(ξ)

−1Un(ξ), (2.2)

where Ωn(ξ) = n−1
∑n

i=1 ui(ξ)ui(ξ)
T −Un(ξ)Un(ξ)

T .

3 Asymptotic Theories

Let ξ̂(w0) be the minimizer of Qn(ξ) in (2.2), and let ξ0(w0) denote the true

parameter. The conditions needed for developing the asymptotic properties of

ξ̂(w0) are as follows:

(C1) (Z,W ) has a bounded support.

(C2) The joint density of (T,C,Z,W ) is twice-continuously differentiable and is

bounded away from zero on its support.

(C3) P (C ≥ c0|Z,W ) = P (C = c0|Z,W ) > 0, where c0 is the study duration.

(C4) K(·) is a symmetric density function and has a finite (2r + 2)-moment.

(C5) w0 is an interior point of the support of W , w0 ∈ W .

Statistica Sinica: Preprint 
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6 GUOSHENG YIN, DONGLIN ZENG, and HUI LI

(C6) β0(w0) is (r + 1)-continuously differentiable at w0 with r ≥ 0.

(C7) hn → 0, and nhn → ∞.

(C8) nh2r+3
n = O(1).

Conditions (C1)–(C3) are standard assumptions in the context of survival anal-

ysis. The smoothness conditions for β0(·) and the kernel function in (C4)–(C6)

allow us to carry out estimation using rth order local polynomials at w0. The

bandwidth condition (C7) controls the variability of the local polynomial esti-

mator, while (C8) implies that the bias of the proposed estimator can be up to√
nh2r+3

n -order. From the last two conditions, one choice of hn is n−1/(2r+3).

Theorem 1 If (C1)–(C7) hold, ξ̂(w0) is a uniformly consistent estimator of

ξ0(w0) for w0 ∈ W.

Set µk =
∫
ukK(u)du and H = {(µk+j)(r+1)×(r+1) × Diag(1, hn, . . . , h

r
n)} ⊗

Ip×p, where (µk+j)(r+1)×(r+1) is a (r + 1) × (r + 1) dimensional matrix with

elements µk+j (k, j = 0, . . . , r). Here, ⊗ is the Kronecker product, and Ip×p is

the p-dimensional identity matrix.

Theorem 2 If (C1)–(C8) hold, for each interior point w0 ∈ W,√
nhn

{
H
(
ξ̂(w0)− ξ0(w0)

)
− hr+1

n D−1b
}

D−→ N
(
0,Σ

)
,

where D, b, and Σ are given in the supplementary material.

The proofs of the theorems are outlined in the supplementary material; they

rely on empirical process theory (van der Vaart and Wellner (1996); Kosorok

(2008)). As the variance of ξ̂(w0) depends on the density of the error, we use the

bootstrap procedure to estimate the standard errors of the parameter estimates

so as to avoid nonparametric functional estimation.

The first p components of ξ(w0) correspond to β(w0). Take βj(w0) to be the

jth element of β(w0). The optimal bandwidth can be obtained by minimizing

the weighted mean squared error∫ {
Bias

(
β̂j(w)

)2
+Var

(
β̂j(w)

)}
Ψ(w)dw,

Statistica Sinica: Preprint 
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where Ψ(·) is a nonnegative and integrable weight function. From Theorem 2,

the weighted mean squared error is given by∫ {
h2r+2
n ϕ2

j (w) +
1

nhn
σjj(w)

}
Ψ(w)dw,

where ϕj(·) is the jth element of the vector D−1b and σjj(·) is the jth diagonal

element of Σ. As a result, we can obtain an optimal hn by minimizing the overall

mean squared error

p∑
j=1

∫ {
Bias

(
β̂j(w)

)2
+Var

(
β̂j(w)

)}
Ψ(w)dw.

This leads to

hn = n−1/(2r+3)

{ ∑p
j=1

∫
σjj(w)Ψ(w)dw

(2r + 2)
∑p

j=1

∫
ϕ2
j (w)Ψ(w)dw

}1/(2r+3)

.

In practice, we can use a K-fold cross-validation approach to selecting the

bandwidth (Hoover et al. (1998)). We divide the data into K equal-sized sub-

groups, denoted by Dk, k = 1, · · · ,K. For the data excluding Dk, we fit the τ -

quantile regression model to obtain the parameter estimates β̂(−k)(Wi). We then

estimate the residual for each subject belonging toDk, êi = logXi−β̂(−k)(Wi)
TZi

for i ∈ Dk, and construct the empirical cumulative hazard function based on êi,

Λ̃k(0) =
∑

êi≤0,i∈Dk

∆i∑
j∈Dk

I(êj ≥ êi)
.

We find the optimal bandwidth by minimizing
∑K

k=1 |Λ̃k(0) + log(1− τ)|.

4 Simulation Studies

4.1 Homogeneous Error

To examine the finite sample property of the proposed method, we conducted

extensive simulation studies. We first considered a model with homogeneous

errors,

log(T ) = β0(W ) + β1(W )Z1 + β2(W )Z2 + ϵ, (4.1)

Statistica Sinica: Preprint 
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where β0(W ) = 0.5, β1(W ) = W 2, and β2(W ) = cos(3W ). The covariates

W , Z1, and Z2 were Unif(−1, 1), Unif(0, 1), and N(0, 1), respectively; the error

ϵ was N(0, 1). Censoring times were independently generated from a uniform

distribution to yield a censoring rate of 25%. We partitioned the range of W ,

[−1, 1], into 20 equal intervals to evaluate the coefficient functions. As the GMM

objective function in (2.2) is complicated and highly nonlinear with respect to the

parameters, we applied the Nelder–Mead (1965) simplex algorithm to minimize

the quadratic function. We took a local linear expansion with r = 1, chose

the Gaussian kernel function and explored the bandwidths hn = 0.06 and 0.08.

The sample size was n = 200, and we took 400 bootstrap samples for variance

estimation. For each configuration, we replicated 500 simulations.

Table 1 summarizes the estimation results for w0 = −0.5, 0, and 0.5. We

present the average of the varying-coefficient estimates, the standard deviation

(SD), the average of the estimated standard errors (SE) based on the bootstrap

method, and the coverage probability of the 95% confidence interval (CP%). We

also provide the estimates for the corresponding derivatives of the varying coef-

ficients. One can see that the estimation bias is small, the bootstrap variance

estimate provides a fairly good approximation to the variability of the estima-

tors, and the coverage probability reasonably matches the nominal level. Under

different bandwidths, the simulation results were similar, indicating to a certain

extent the robustness of the method with respect to the bandwidth. Figure 1

shows both the estimated varying-coefficient functions and their derivatives with

a bandwidth of hn = 0.08 coupled with the 95% confidence intervals. The esti-

mated curves match reasonably with the true functions, while the estimates for

the derivatives of the varying coefficients are generally not as good as those for

the functions themselves.

To acknowledge that some covariate effects are varying while others are con-

stant, we took

log(T ) = β0(W ) + β1(W )Z1 + γZ2 + ϵ, (4.2)

where β0(W ) = W 2, β1(W ) = sin(3W ), and γ = 0.5. The covariate W was

Unif(−1, 1), Z1 was Unif(0, 1), Z2 was Bernoulli(0.5), and the error ϵ wasN(0, 0.25).

We took the sample sizes n = 200 and 400, and the censoring rates c% = 0, 20%,

and 40%. A simple way to estimate the constant coefficient γ is to first estimate

Statistica Sinica: Preprint 
doi:10.5705/ss.2011.195



VARYING-COEFFICIENT CENSORED QUANTILE REGRESSION 9

γ(w0), and then take an average over all the chosen w0. Table 2 shows that the

estimates are quite accurate in general when the model involves both varying

and constant coefficients. The bias is small, the standard errors reasonably char-

acterize the variation of the estimates, and the coverage probabilities are around

95%.

For comparison, we also implemented the B-spline method in Neocleous and

Portnoy (2009), for which we chose three knots corresponding to the 25%, 50%

and 75% quantiles and explored piecewise linear, quadratic, and cubic spline

terms. Table 3 shows that the mean squared errors are comparable between the

two methods.

4.2 Heteroscedastic Error

As quantile regression is known to be most suitable for heteroscedastic errors,

we also examined heterogeneity induced by covariate-dependent errors. We sim-

ulated failure times from the model

log(T ) = β0(W ) + β1(W )Z + ϵ, (4.3)

where β0(W ) = 2W and β1(W ) = sin(3W ). We generated W as N(0, 1), Z as

Bernoulli(0.5), and the error ϵ as W ×N(0, 1) for Z = 1 and as W ×N(0, 0.7) for

Z = 0. Censoring times were independently uniform and yielded an approximate

censoring rate of 20%. We partitioned the range of W into 18 equal intervals

to locally evaluate the coefficients at each chosen w0. We took a local linear

expansion with r = 1, chose the Gaussian kernel function and considered the

bandwidths hn = 0.16, 0.18, and 0.20. We took the sample size n = 200 and,

for each configuration, we replicated 500 simulations. To handle heteroscedastic

errors, we stratified the estimating equation by Z, and minimized Qn(ξ|Z = 0)

and Qn(ξ|Z = 1), respectively. From the simulation results summarized in Table

4, one can see that the biases of the estimates are small, the standard errors are

close to the standard deviations, and the coverage probabilities are reasonable.

For hn = 0.18, we exhibit the estimated curves for τ = 0.5 in Figure 2, and those

for τ = 0.25 in Figure 3. Under (4.3), the computing time using I5-2430M CPU

(2.40GHz and 8GB RAM) with FORTRAN PowerStation 4.0 was approximately

Statistica Sinica: Preprint 
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10 GUOSHENG YIN, DONGLIN ZENG, and HUI LI

1 minute per simulation.

5 Example

We applied the proposed model to a data set from a leukemia study conducted at

M. D. Anderson Cancer Center (Tsimberidou et al. (2006)). The study involved

130 evaluable patients, diagnosed with Richter’s syndrome via biopsy or fine-

needle aspiration, who had been examined between January 1975 and June 2005.

Richter’s syndrome (RS) is a rare and aggressive type of acute adult leukemia

that often results from a transformation of chronic lymphocytic leukemia into

diffuse large cell lymphoma; it is usually fatal within a short period of time.

In this study, patients were treated by chemoimmunotherapy with rituximab or

chemotherapy alone. Figure 4 exhibits the Kaplan–Meier survival curves for the

130 patients with RS. We can see a sharp change-point in the survival curve

around two years of follow-up, which would typically cause the violation of the

usual proportional hazards assumption (Cox (1972)). The censoring rate of the

data was approximately 12%.

In the varying-coefficient quantile regression model, we included three co-

variates: treatment (1 if using chemotherapy alone, and 0 if using chemoim-

munotherapy with rituximab), age (ranging from 29 to 77 years with a median

of 60 years), and sex (1 if male, and 0 if female). We were interested in charac-

terizing the nonlinear interactions between patient age and other covariates and

how they affected the quantiles of patient survival times. With τ = 0.25, 0.5,

and 0.75, we fit the proposed varying-coefficient quantile regression model

qτ (log(T )|Z,W ) = β0(W ) + β1(W )Ztreatment + β2(W )Zsex,

where W is the logarithm of patient age. In this analysis, we divided the data

into five groups of 26 observations each. Based on the five-fold cross-validation

procedure described earlier, the bandwidth hn = 0.19 appeared to be a rea-

sonable choice. We partitioned the range of W into 20 equal intervals. The

estimated coefficient functions and the corresponding 95% confidence intervals

are given in Figure 5. In the median regression, there was a trend that treatment

with chemoimmunotherapy and rituximab improved patient survival while such

Statistica Sinica: Preprint 
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difference diminished as patient age increased. This trend appeared to be similar

for the other two conditional quantiles as well. With regard to the covariate

effect of patient sex, we did not find any quantile difference between male and

female patients for τ = 0.5. For τ = 0.25, it appeared that younger male patients

had better survival than younger female patients, while older male patients had

worse survival than older female patients. For τ = 0.75, male patients seemed

to have better survival than female regardless of their ages. Generally, all these

findings are not statistically significant, they only exhibit some trends in patients’

survival with respect to different covariates.

6 Discussion

We have proposed censored quantile regression with varying coefficients by adopt-

ing the estimation method of Yang (1999) due to the simplicity of constructing

the covariate-weighted cumulative hazard function. By taking the local poly-

nomial expansion of varying-coefficient functions, we construct the kernel-based

moments such that the estimation procedure can be naturally integrated with

the GMM. Although the GMM involves complicated nonlinear estimating equa-

tions, our numerical studies have shown that the estimators perform reasonably

well with finite sample sizes. The proposed method allows the error to depend

on the exposure variable W , and thus can handle heteroscedastic errors to some

extent. We may also allow the error to depend on covariate Z by stratification

for discrete Z, or by local kernel estimation for continuous Z. Nevertheless, if

the dimension of Z is high, estimation can be challenging. The partially linear

quantile regression model in Neocleous and Portnoy (2009) can accommodate

general heteroscedasticty, while to carry out median regression analysis, all the

regression quantiles below the median must be calculated first.

In censored quantile regression, it is known that the estimation of upper

quantiles may not be stable due to identifiability issues. In general, τ should be

smaller than infz,w0 P (T ≤ c0|Z = z,W = w0), where c0 is the study end time,

so that we would have data to estimate the τ -quantile. For varying-coefficient

models, it is important to determine whether covariate effects are varying or con-

stant over the exposure variableW . Toward this goal, some model goodness-of-fit

Statistica Sinica: Preprint 
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procedures might be considered (He and Zhu (2003)), and automatic discovery

procedures (Zhang, Cheng, and Liu (2011)) also warrant further research.
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Table 1: Estimation of the regression coefficients and the corresponding derivatives under
model (4.1) with 25% censoring.

w0 hn True β̂(w0) SD SE CP(%) True β̂
′
(w0) SD SE CP(%)

β0(w) = 0.5 β
′

0(w) = 0
−0.5 0.06 0.5 0.592 0.464 0.520 96.8 0 −0.113 2.208 2.461 96.8

0.08 0.547 0.391 0.454 97.2 −0.008 1.595 1.792 97.2
0 0.06 0.5 0.534 0.439 0.506 97.2 0 0.270 1.886 2.205 97.0

0.08 0.521 0.389 0.432 96.0 0.037 1.403 1.578 96.6
0.5 0.06 0.5 0.523 0.498 0.538 96.6 0 0.414 1.945 2.323 97.4

0.08 0.483 0.419 0.455 96.2 0.208 1.350 1.616 98.0

β1(w) = w2 β
′

1(w) = 2w
−0.5 0.06 0.25 0.262 0.800 0.886 98.0 −1.0 −0.232 3.394 3.730 97.4

0.08 0.334 0.706 0.780 97.6 −0.075 2.585 2.869 96.6
0 0.06 0 0.162 0.780 0.872 97.2 0 0.257 2.926 2.331 97.2

0.08 0.132 0.683 0.754 97.2 0.475 2.288 2.481 96.2
0.5 0.06 0.25 0.434 0.934 0.913 97.8 1.0 0.748 3.088 3.431 96.4

0.08 0.485 0.818 0.782 98.8 0.954 2.094 2.507 97.6

β2(w) = cos(3w) β
′

2(w) = −3 sin(3w)
−0.5 0.06 0.071 0.141 0.477 0.506 94.8 2.992 2.530 1.576 1.816 96.4

0.08 0.210 0.515 0.464 95.4 2.465 1.012 1.234 96.2
0 0.06 1.000 0.917 0.380 0.460 97.0 0 0.353 1.545 1.826 98.2

0.08 0.912 0.385 0.420 95.2 0.274 1.030 1.197 97.2
0.5 0.06 0.071 0.171 0.561 0.521 91.6 −2.992 −2.059 1.640 2.012 95.4

0.08 0.130 0.474 0.485 95.6 −2.095 1.005 1.282 93.4

SD is the standard deviation, SE is the estimated standard error using the bootstrap method averaged

over 500 simulations, CP(%) is the 95% confidence interval coverage probability.
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Table 2: Estimation of the regression coefficients under model (4.2) with varying and
constant coefficients.

β0(w) = w2 β1(w) = sin(3w) γ = 0.5
n c% w0 Bias SD SE CP(%) Bias SD SE CP(%) Bias SD SE CP(%)
200 0 −0.7 −0.024 0.182 0.226 97.0 0.128 0.268 0.333 95.4 0.004 0.089 0.093 96.2

0 −0.060 0.161 0.180 94.0 −0.008 0.253 0.276 94.0
0.7 0.022 0.189 0.232 97.0 −0.100 0.307 0.314 94.4

20 −0.7 −0.019 0.193 0.254 98.4 0.127 0.307 0.368 96.6 0.023 0.100 0.103 91.6
0 0.051 0.165 0.196 96.6 −0.011 0.262 0.305 97.6
0.7 0.050 0.239 0.285 97.2 −0.144 0.343 0.387 95.0

40 −0.7 0.020 0.252 0.299 97.8 0.115 0.399 0.440 96.0 0.034 0.113 0.126 96.0
0 0.072 0.186 0.234 96.4 −0.025 0.284 0.347 97.4
0.7 0.121 0.318 0.405 96.6 −0.078 0.438 0.498 96.6

400 0 −0.7 0.034 0.131 0.144 95.6 0.086 0.198 0.225 95.4 0.001 0.059 0.0623 95.8
0 0.035 0.123 0.137 94.8 0.009 0.182 0.213 97.4
0.7 0.021 0.130 0.147 96.4 −0.078 0.204 0.226 94.4

20 −0.7 0.034 0.141 0.162 97.2 0.082 0.223 0.252 95.6 −0.001 0.061 0.069 96.8
0 0.039 0.131 0.147 95.4 0.008 0.202 0.231 97.4
0.7 0.033 0.152 0.191 98.2 −0.080 0.243 0.280 96.6

40 −0.7 0.026 0.157 0.197 98.2 0.087 0.248 0.296 95.4 0.010 0.082 0.087 96.2
0 0.048 0.143 0.172 96.4 −0.001 0.231 0.265 96.8
0.7 0.134 0.342 0.353 93.4 −0.068 0.330 0.390 97.8

SD is the standard deviation, SE is the estimated standard error using the bootstrap method averaged

over 500 simulations, CP(%) is the 95% confidence interval coverage probability.
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Table 3: Comparison of the proposed method with the B-spline method of Neocleous
and Portnoy (2009) in terms of mean squared errors (×10−2) with a censoring rate of
20%, and hn = 0.06, 0.10, and 0.14.

MSE MSE
Kernel (hn) β0(w0) β1(w0) B-spline β0(w0) β1(w0)

0.06 3.806 3.615 Linear 3.714 10.862
0.10 9.380 3.151 Quadratic 4.541 14.199
0.14 22.875 4.873 Cubic 5.267 17.399
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Table 4: Estimation of the regression coefficients under model (4.3) with a censoring rate
of 20%, and hn = 0.16, 0.18, and 0.2.

β0(w) = 2w β1(w) = sin(3w)

w0 h True β̂0(w0) SD SE CP(%) True β̂1(w0) SD SE CP(%)
−1.2 0.16 −2.4 −2.459 0.471 0.453 96.6 0.443 0.307 0.484 0.714 98.6

0.18 −2.463 0.339 0.479 96.8 0.284 0.528 0.744 99.4
0.20 −2.517 0.464 0.483 95.4 0.285 0.498 0.792 98.4

−0.8 0.16 −1.6 −1.660 0.402 0.259 97.0 −0.675 −0.487 0.361 0.500 97.8
0.18 −1.682 0.287 0.283 95.2 −0.462 0.367 0.519 97.2
0.20 −1.700 0.428 0.314 93.6 −0.419 0.460 0.555 96.4

−0.4 0.16 −0.8 −0.811 0.315 0.303 97.6 −0.932 −0.854 0.405 0.485 98.2
0.18 −0.811 0.411 0.319 97.2 −0.885 0.527 0.551 98.4
0.20 −0.833 0.423 0.327 96.6 −0.900 0.476 0.568 97.8

0 0.16 0 0.180 0.501 0.278 96.0 0 −0.058 0.722 0.473 99.2
0.18 0.184 0.532 0.265 94.4 0.023 0.672 0.471 97.0
0.20 0.158 0.554 0.240 95.0 −0.012 0.639 0.454 97.8

0.4 0.16 0.8 0.779 0.323 0.302 98.0 0.932 0.937 0.506 0.557 98.2
0.18 0.775 0.336 0.317 97.2 0.996 0.639 0.606 98.4
0.20 0.755 0.339 0.298 97.2 1.016 0.632 0.613 97.6

0.8 0.16 1.6 1.612 0.504 0.467 97.6 0.675 0.776 0.767 0.771 97.8
0.18 1.646 0.734 0.505 95.8 0.700 0.667 0.774 98.4
0.20 1.643 0.766 0.625 97.0 0.711 0.656 0.805 97.4

1.2 0.16 2.4 2.502 0.612 0.674 96.2 −0.443 −0.016 0.804 0.956 92.2
0.18 2.438 0.492 0.637 96.8 −0.017 0.936 0.988 93.8
0.20 2.409 0.448 0.644 97.4 −0.057 0.795 0.972 93.4

SD is the standard deviation, SE is the estimated standard error using the bootstrap method averaged

over 500 simulations, CP(%) is the 95% confidence interval coverage probability.
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Figure 1: Estimation results under model (4.1) with n = 200, 25% censoring and
hn = 0.08. (a)–(f): solid lines are the true functions and dashed lines are the estimates
of varying coefficients coupled with the pointwise 95% confidence intervals.
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Figure 2: Estimation results under model (4.3) with n = 200, τ = 0.5, 20% censoring
and hn = 0.18. (a)–(b): solid lines are the true functions and dashed lines are the
estimates of the varying coefficients coupled with the pointwise 95% confidence intervals.
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Figure 3: Estimation results under model (4.3) with n = 200, τ = 0.25, 20% censoring
and hn = 0.18. (a)–(b): solid lines are the true functions and dashed lines are the
estimates of the varying coefficients coupled with the pointwise 95% confidence intervals.
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Figure 4: Estimated Kaplan–Meier survival curves stratified by treatment for the
Richter’s syndrome data.
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Figure 5: Analysis of the Richter’s syndrome data based on the proposed varying-
coefficient quantile regression. The curve is the estimated varying coefficients and the
shaded area is the pointwise 95% confidence interval.
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