112 research outputs found
Recommended from our members
The growth of the oceanic boundary layer during the COARE intensive observational period: Large Eddy simulation results
A principal goal of the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE) is to gain an understanding of the processes that control mixing in the upper 100 m of the western tropical Pacific warm pool. The warm pool is an important heat reservoir for the global ocean and is responsible for many of the observed climatic changes associated with El Nino/Southern Oscillation (ENSO) events. This water mass is highly sensitive to mixed-layer processes that are controlled by surface heat, salinity, and momentum fluxes. During most of the year, these fluxes are dominated by solar heating and occasional squalls that freshen the top of the mixed layer and force shallow mixing of about 10-20 m. From November to April, the usual weather pattern is frequently altered by westerly wind bursts that are forced by tropical cyclones and intraseasonal oscillations. These wind bursts generate a strong eastward surface current and can force mixing as deep as 100 m over a period of days. Observations from the intensive observation period (IOP) in COARE indicate that mixed-layer deepening is accompanied by strong turbulence dissipation at the mixed layer base. A short westerly wind burst occurred during the first leg of TOGA-COARE, and lasted about 4-5 days. During this period, the maximum winds were about 10 m s{sup -1}, and the resulting eastward surface flow was about 0.5 m s{sup -1}. The strength of this event was somewhat weaker than a typical westerly wind burst, but the mixed-layer structure and growth are similar to the more vigorous wind bursts discussed
Recommended from our members
Upper-Ocean Turbulence during a Westerly Wind Burst: A Comparison of Large-Eddy Simulation Results and Microstructure Measurements
The response of the upper ocean to westerly wind forcing in the western equatorial Pacific was modeled by means of large-eddy simulation for the purpose of comparison with concurrent microstructure observations. The model was initialized using currents and hydrography measured during the Coupled Ocean–Atmosphere Response Experiment (COARE) and forced using measurements of surface fluxes over a 24-h period. Comparison of turbulence statistics from the model with those estimated from concurrent measurements reveals good agreement within the mixed layer. The shortcomings of the model appear in the stratified fluid below the mixed layer, where the vertical length scales of turbulent eddies are limited by stratification and are not adequately resolved by the model. Model predictions of vertical heat and salt fluxes in the entrainment zone at the base of the mixed layer are very similar to estimates based on microstructure data
Recommended from our members
Measurements of Form and Frictional Drags over a Rough Topographic Bank
Pressure differences across topography generate a form drag that opposes the flow in the water column, and viscous and pressure forces acting on roughness elements of the topographic surface generate a frictional drag on the bottom. Form drag and bottom roughness lengths were estimated over the East Flower Garden Bank (EFGB) in the Gulf of Mexico by combining an array of bottom pressure measurements and profiles of velocity and turbulent kinetic dissipation rates. The EFGB is a coral bank about 6 km wide and 10 km long located at the shelf edge that rises from 100-m water depth to about 18m below the sea surface. The average frictional drag coefficient over the entire bank was estimated as 0.006 using roughness lengths that ranged from 0.001 cm for relatively smooth portions of the bank to 1–10 cm for very rough portions over the corals. The measured form drag over the bank showed multiple time-scale variability. Diurnal tides and low-frequency motions with periods ranging from 4 to 17 days generated form drags of about 2000 N m⁻¹ with average drag coefficients ranging between 0.03 and 0.22, which are a factor of 5–35 times larger than the average frictional drag coefficient. Both linear wave and quadratic drag laws have similarities with the observed form drag. The form drag is an important flow retardation mechanism even in the presence of the large frictional drag associated with coral reefs and requires parameterization.Keywords: Tidal flow, Stratified flow, Pressure drag, Internal wavesKeywords: Tidal flow, Stratified flow, Pressure drag, Internal wave
Towards Digital Thinking and Practices: Experiences of Sri Lankan Teachers and Students
Commonwealth Digital Education Leadership Training in Action (C-DELTA), an open and free online programme of the Commonwealth of Learning, provides a framework to foster digital education. The Open University of Sri Lanka implemented an intervention during 2020-2021 to promote digital education in Sri Lankan secondary schools, through the adoption of C-DELTA. This paper presents how C-DELTA supported developing digital thinking and practices among teachers and students, challenges faced and supports received by them, and impacts of the intervention. Participants’ experiences were captured through questionnaire surveys, concept maps, focus group interviews, reflective stories, and video narratives. The findings revealed that the intervention has enhanced developing digital learning skills of teachers and students, and changing their thinking and practices, yet, amid various challenges. While the implementation of C-DELTA in schools has been slow during the COVID-19 pandemic, the pandemic itself has shown the significance of improving digital literacy and digital practices
Recommended from our members
Surface Wave Effects on High-Frequency Currents over a Shelf Edge Bank
Several acoustic Doppler current profilers and vertical strings of temperature, conductivity, and pressure sensors, deployed on and around the East Flower Garden Bank (EFGB), were used to examine surface wave effects on high-frequency flows over the bank and to quantify spatial and temporal characteristic of these high-frequency flows. The EFGB, about 5-km wide and 10-km long, is located about 180-km southeast of Galveston, Texas, and consists of steep slopes on southern and eastern sides that rise from water depths over 100 m to within 20 m of the surface. Three-dimensional flows with frequencies ranging from 0.2 to 2 cycles per hour (cph) were observed in the mixed layer when wind speed and Stokes drift at the surface were large. These motions were stronger over the bank than outside the perimeter. The squared vertical velocity w² was strongest near the surface and decayed exponentially with depth, and the e-folding length of w² was 2 times larger than that of Stokes drift. The 2-h-averaged w² in the mixed layer, scaled by the squared friction velocity, was largest when the turbulent Langmuir number was less than unity and the mixed layer was shallow. It is suggested that Langmuir circulation is responsible for the generation of vertical flows in the mixed layer, and that the increase in kinetic energy is due to an enhancement of Stokes drift by wave focusing. The lack of agreement with open-ocean Langmuir scaling arguments is likely due to the enhanced kinetic energy by wave focusing.Keywords: Small scale processes, Coastal flows, Topographic effects, Wind waves, Slope, Continental shelf, Wind stressKeywords: Small scale processes, Coastal flows, Topographic effects, Wind waves, Slope, Continental shelf, Wind stres
Constructive Hybrid Games
Hybrid games are models which combine discrete, continuous, and adversarial
dynamics. Game logic enables proving (classical) existence of winning
strategies. We introduce constructive differential game logic (CdGL) for hybrid
games, where proofs that a player can win the game correspond to computable
winning strategies. This is the logical foundation for synthesis of correct
control and monitoring code for safety-critical cyber-physical systems. Our
contributions include novel static and dynamic semantics as well as soundness
and consistency.Comment: 60 pages, preprint, under revie
Turbulence and Fossil Turbulence in Oceans and Lakes
Turbulence is defined as an eddy-like state of fluid motion where the
inertial-vortex forces of the eddies are larger than any of the other forces
that tend to damp the eddies out. Energy cascades of irrotational flows from
large scales to small are non-turbulent, even if they supply energy to
turbulence. Turbulent flows are rotational and cascade from small scales to
large, with feedback. Viscous forces limit the smallest turbulent eddy size to
the Kolmogorov scale. In stratified fluids, buoyancy forces limit large
vertical overturns to the Ozmidov scale and convert the largest turbulent
eddies into a unique class of saturated, non-propagating, internal waves,
termed fossil-vorticity-turbulence. These waves have the same energy but
different properties and spectral forms than the original turbulence patch. The
Gibson (1980, 1986) theory of fossil turbulence applies universal similarity
theories of turbulence and turbulent mixing to the vertical evolution of an
isolated patch of turbulence in a stratified fluid as its growth is constrained
and fossilized by buoyancy forces. These theories apply to the dynamics of
atmospheric, astrophysical and cosmological turbulence.Comment: 31 pages, 11 figures, 2 tables, see http://www-acs.ucsd.edu/~ir118
Accepted for publication by the Chinese Journal of Oceanology and Limnolog
Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1
<p>Abstract</p> <p>Background</p> <p><it>Cinnamomum cassia </it>bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8<sup>+ </sup>T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model.</p> <p>Methods</p> <p>Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer <it>in vitro </it>and <it>in vivo </it>mouse melanoma model.</p> <p>Results</p> <p>Cinnamon extract strongly inhibited tumor cell proliferation <it>in vitro </it>and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as <it>Bcl-2</it>, <it>BcL-xL </it>and <it>survivin</it>. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed <it>in vitro</it>.</p> <p>Conclusion</p> <p>Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes <it>in vitro </it>and <it>in vivo </it>mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers.</p
Introduction to special section on Recent Advances in the Study of Optical Variability in the Near-Surface and Upper Ocean
Optical variability occurs in the near-surface and upper ocean on very short time and space scales (e.g., milliseconds and millimeters and less) as well as greater scales. This variability is caused by solar, meteorological, and other physical forcing as well as biological and chemical processes that affect optical properties and their distributions, which in turn control the propagation of light across the air-sea interface and within the upper ocean. Recent developments in several technologies and modeling capabilities have enabled the investigation of a variety of fundamental and applied problems related to upper ocean physics, chemistry, and light propagation and utilization in the dynamic near-surface ocean. The purpose here is to provide background for and an introduction to a collection of papers devoted to new technologies and observational results as well as model simulations, which are facilitating new insights into optical variability and light propagation in the ocean as they are affected by changing atmospheric and oceanic conditions
Progress in understanding of Indian Ocean circulation, variability, air-sea exchange and impacts on biogeochemistry
Over the past decade, our understanding of the Indian Ocean has advanced through concerted efforts toward measuring the ocean circulation and air–sea exchanges, detecting changes in water masses, and linking physical processes to ecologically important variables. New circulation pathways and mechanisms have been discovered that control atmospheric and oceanic mean state and variability. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean since the last comprehensive review, describing the Indian Ocean circulation patterns, air–sea interactions, and climate variability. Coordinated international focus on the Indian Ocean has motivated the application of new technologies to deliver higher-resolution observations and models of Indian Ocean processes. As a result we are discovering the importance of small-scale processes in setting the large-scale gradients and circulation, interactions between physical and biogeochemical processes, interactions between boundary currents and the interior, and interactions between the surface and the deep ocean. A newly discovered regional climate mode in the southeast Indian Ocean, the Ningaloo Niño, has instigated more regional air–sea coupling and marine heatwave research in the global oceans. In the last decade, we have seen rapid warming of the Indian Ocean overlaid with extremes in the form of marine heatwaves. These events have motivated studies that have delivered new insight into the variability in ocean heat content and exchanges in the Indian Ocean and have highlighted the critical role of the Indian Ocean as a clearing house for anthropogenic heat. This synthesis paper reviews the advances in these areas in the last decade
- …