339 research outputs found

    The Effect of Symmetry Lowering on the Dielectric Response of BaZrO3BaZrO_3

    Full text link
    We use first-principles density functional theory calculations to investigate the dielectric response of BaZrO3_3 perovskite. A previous study [Arkbarzadeh {\em et al.} Phys. Rev. B {\bf 72}, 205104 (2005)] reported a disagreement between experimental and theoretical low temperature dielectric constant ϵ\epsilon for the high symmetry BaZrO3_3 structure. We show that a fully relaxed 40-atom BaZrO3_3 structure exhibits O6_6 octahedral tilting, and ϵ\epsilon that agrees with experiment. The change in ϵ\epsilon from high-symmetry to low-symmetry structure is due to increased phonon frequencies as well as decreased mode effective charges.Comment: 4 pages, 2 figure

    Commensurate-Incommensurate Magnetic Phase Transition in Magnetoelectric Single Crystal LiNiPO4_4

    Full text link
    Neutron scattering studies of single-crystal LiNiPO4_4 reveal a spontaneous first-order commensurate-incommensurate magnetic phase transition. Short- and long-range incommensurate phases are intermediate between the high temperature paramagnetic and the low temperature antiferromagnetic phases. The modulated structure has a predominant antiferromagnetic component, giving rise to satellite peaks in the vicinity of the fundamental antiferromagnetic Bragg reflection, and a ferromagnetic component giving rise to peaks at small momentum-transfers around the origin at (0,±Q,0)(0,\pm Q,0). The wavelength of the modulated magnetic structure varies continuously with temperature. It is argued that the incommensurate short- and long-range phases are due to spin-dimensionality crossover from a continuous to the discrete Ising state. These observations explain the anomalous first-order transition seen in the magnetoelectric effect of this system

    Local structural origins of the distinct electronic properties of Nb-substituted SrTiO3_3 and BaTiO3O_3

    Full text link
    Near or less than 10% Nb substitution on the Ti site in perovskite SrTiO3_3 results in metallic behavior, in contrast to what is seen in BaTiO3_3. Given the nearly identical structure and electron counts of the two materials, the distinct ground states for low substitution have been a long-standing puzzle. Here we find from neutron studies of average and local structure, the subtle yet critical difference that we believe underpins the distinct electronic properties in these fascinating materials. While SrTi0.875_{0.875}Nb_0.125{0.125}O3_3 possesses a distorted non-cubic structure at 15 K, the BO6_6 octahedra in the structure are regular. BaTi0.875_{0.875}Nb0.125_{0.125}O3_3 on the other hand shows evidence for local cation off-centering whilst retaining a cubic structure.Comment: 4 pages, 5 figure

    Structure and elastic properties of Mg(OH)2_2 from density functional theory

    Full text link
    The structure, lattice dynamics and mechanical properties of the magnesium hydroxide have been investigated with static density functional theory calculations as well as \it {ab initio} molecular dynamics. The hypothesis of a superstructure existing in the lattice formed by the hydrogen atoms has been tested. The elastic constants of the material have been calculated with static deformations approach and are in fair agreement with the experimental data. The hydrogen subsystem structure exhibits signs of disordered behaviour while maintaining correlations between angular positions of neighbouring atoms. We establish that the essential angular correlations between hydrogen positions are maintained to the temperature of at least 150 K and show that they are well described by a physically motivated probabilistic model. The rotational degree of freedom appears to be decoupled from the lattice directions above 30K

    First-principles study of orthorhombic CdTiO3 perovskite

    Full text link
    In this work we perform an ab-initio study of CdTiO3 perovskite in its orthorhombic phase using FLAPW method. Our calculations help to decide between the different cristallographic structures proposed for this perovskite from X-Ray measurements. We compute the electric field gradient tensor (EFG) at Cd site and obtain excellent agreement with available experimental information from a perturbed angular correlation (PAC) experiment. We study EFG under an isotropic change of volume and show that in this case the widely used "point charge model approximation" to determine EFG works quite well.Comment: 4 pages, 1 figure. Accepted in Physical Review

    Antiferromagnetism in the magnetoelectric effect single crystal LiMnPO4_4

    Full text link
    Elastic and inelastic neutron scattering studies reveal details of the antiferromagnetic tansition and intriguing spin-dynamics in the magneto-electric effect single crystal LiMnPO4_4. The elastic scattering studies confirm the system is antiferromagnetic (AFM) below TNT_N=33.75 K with local magnetic moments (Mn2+^{2+}; S=5/2S = 5/2) that are aligned along the crystallographic a-axis. The spin-wave dispersion curves propagating along the three principal axes, determined by inelastic scattering, are adequately modeled in the linear spin-wave framework assuming a spin-Hamiltonian that is parameterized by inter- and in-plane nearest- and next-nearest-neighbor interactions, and by easy-plane anisotropy. The temperature dependence of the spin dynamics makes this an excellent model many-body spin system to address the question of the relationship between spin-wave excitations and the order parameter

    Characterization of Ordering in A-Site Deficient Perovskite Ca1-xLa2x/3TiO3 Using STEM/EELS

    Get PDF
    The vacancy ordering behavior of an A-site deficient perovskite system, Ca1-xLa2x/3TiO3, was studied using atomic resolution scanning transmission electron microscopy (STEM) in conjunction with electron energy-loss spectroscopy (EELS), with the aim of determining the role of A-site composition changes. At low La content (x = 0.2), adopting Pbnm symmetry, there was no indication of long-range ordering. Domains, with clear boundaries, were observed in bright-field (BF) imaging, but were not immediately visible in the corresponding high-angle annular dark-field (HAADF) image. These boundaries, with the aid of displacement maps from A-site cations in the HAADF signal, are shown to be tilt boundaries. At the La-rich end of the composition (x = 0.9), adopting Cmmm symmetry, long-range ordering of vacancies and La3+ ions was observed, with alternating La-rich and La-poor layers on (001)p planes, creating a double perovskite lattice along the c axis. These highly ordered domains can be found isolated within a random distribution of vacancies/La3+, or within a large population, encompassing a large volume. In regions with a high number density of double perovskite domains, these highly ordered domains were separated by twin boundaries, with 90° or 180° lattice rotations across boundaries. The occurrence and characteristics of these ordered structures are discussed and compared with similar perovskite systems

    Evidence for MBM_B and MCM_C phases in the morphotropic phase boundary region of (1x)[Pb(Mg1/3Nb2/3)O3]xPbTiO3(1-x)[Pb(Mg_{1/3}Nb_{2/3})O_3]-xPbTiO_3 : A Rietveld study

    Full text link
    We present here the results of the room temperature dielectric constant measurements and Rietveld analysis of the powder x-ray diffraction data on (1x)[Pb(Mg1/3Nb2/3)O3]xPbTiO3(1-x)[Pb(Mg_{1/3}Nb_{2/3})O_3]-xPbTiO_3(PMN-xxPT) in the composition range 0.20x0.450.20 \leq x \leq 0.45 to show that the morphotropic phase boundary (MPB) region contains two monoclinic phases with space groups Cm (or MBM_B type) and Pm (or MCM_C type) stable in the composition ranges 0.27x0.300.27 \leq x \leq 0.30 and 0.31x0.340.31 \leq x \leq 0.34, respectively. The structure of PMN-xxPT in the composition ranges 0x0 \leq x \leq 0.26, and 0.35x10.35 \leq x \leq1 is found to be rhombohedral (R3m) and tetragonal (P4mm), respectively. These results are compared with the predictions of Vanderbilt & Cohen's theory.Comment: 20 pages, 11 pdf figure

    Spin Dynamics in the Magnetoelectric Effect LiCoPO4_4 Compound

    Full text link
    Inelastic neutron scattering (INS) experiments were performed to investigate the spin dynamics in magnetoelectric effect (ME) LiCoPO4_4 single crystals. Weak dispersion was detected in the magnetic excitation spectra along the three principal crystallographic axes measured around the (0 1 0) magnetic reflection. Analysis of the data using linear spin-wave theory indicate that single-ion anisotropy in LiCoPO4_4 is as important as the strongest nearest-neighbor exchange coupling. Our results suggest that Co2+^{2+} single-ion anisotropy plays an important role in the spin dynamics of LiCoPO4_4 and must be taken into account in understanding its physical properties. High resolution INS measurements reveal an anomalous low energy excitation that we hypothesize may be related to the magnetoelectric effect of LiCoPO4_4.Comment: 6 pages, 5 figures, accepted for publication in Phys. Rev.

    Revalidation and electronic cataract surgery audit: a Scottish survey on current practice and opinion

    Get PDF
    PURPOSE: To determine current knowledge and opinion on revalidation, and methods of cataract surgery audit in Scotland and to outline the current and future possibilities for electronic cataract surgery audit. METHODS: In 2010 we conducted a prospective, cross-sectional, Scottish-wide survey on revalidation knowledge and opinion, and cataract audit practice among all senior NHS ophthalmologists. Results were anonymised and recorded manually for analysis. RESULTS: In all, 61% of the ophthalmologists surveyed took part. Only 33% felt ready to take part in revalidation, whereas 76% felt they did not have adequate information about the process. Also, 71% did not feel revalidation would improve patient care, but 85% agreed that cataract surgery audit is essential for ophthalmic practice. In addition, 91% audit their cataract outcomes; 52% do so continuously. Further, 63% audit their subspecialist surgical results. Only 25% audit their cataract surgery practice electronically, and only 12% collect clinical data using a hospital PAS system. Funding and system incompatibility were the main reasons cited for the lack of electronic audit setup. Currently, eight separate hospital IT patient administration systems are used across 14 health boards in Scotland. CONCLUSION: Revalidation is set to commence in 2012. The Royal College of Ophthalmologists will use cataract outcome audit as a tool to ensure surgical competency for the process. Retrospective manual auditing of cataract outcome is time consuming, and can be avoided with an electronic system. Scottish ophthalmologists view revalidation with scepticism and appear to have inadequate knowledge of the process. However, they strongly agree with the concept of cataract surgery audit. The existing and future electronic applications that may support surgical audit are commercial electronic records, web-based applications, centrally funded software applications, and robust NHS connections between community and hospital
    corecore