288 research outputs found

    Formation of Nuclear Spirals in Barred Galaxies

    Full text link
    We have performed smoothed particle hydrodynamics (SPH) simulations for the response of the gaseous disk to the imposed moderately strong non-axisymmetric potentials. The model galaxies are composed of the three stellar components (disk, bulge and bar) and two dark ones (supermassive black hole and halo) whose gravitational potentials are assumed to be invariant in time in the frame corotating with the bar. We found that the torques alone generated by the moderately strong bar that gives the maximum of tangential-to-radial force ratio as (FTan/FRad)max=0.3(F_{Tan}/F_{Rad})_{max}= 0.3 are not sufficient to drive the gas particles close to the center due to the barrier imposed by the inner Lindblad resonances (ILRs). In order to transport the gas particles towards the nucleus (r<100r<100 pc), a central supermassive black hole (SMBH) and high sound speed of the gas are required to be present. The former is required to remove the inner inner Lindblad resonance (IILR) that prevents gas inflow close to the nucleus, while the latter provides favourable conditions for the gas particles to lose their angular momentum and to spiral in. Our models that have no IILR show the trailing nuclear spirals whose innermost parts reach close to the center in a curling way when the gas sound speed is cs15 c_{s} \gtrsim 15 km s1^{-1}. They resemble the symmetric two-armed nuclear spirals observed in the central kiloparsec of spiral galaxies. We found that the symmetric two-armed nuclear spirals are formed by the hydrodynamic spiral shocks caused by the gravitational torque of the bar in the presence of a central SMBH that can remove IILR when the sound speed of gas is high enough to drive a large amount of gas inflow deep inside the ILR. However, the detailed morphology of nuclear spirals depends on the sound speed of gas.Comment: 38 pages, 10 figures, accepted for publication in Ap

    Kinematics of the Galactic Globular Cluster System: New Radial Velocities for Clusters in the Direction of the Inner Galaxy

    Get PDF
    HIRES on the Keck I telescope has been used to measure the first radial velocities for stars belonging to eleven, heavily-reddened globular clusters in the direction of the inner Galaxy. The question of kinematic substructuring among the Galactic globular cluster system is investigated using an updated catalog of globular cluster distances, metallicities and velocities. It is found that the population of metal-rich globular clusters shows significant rotation at all Galactocentric radii. For the metal-rich clusters within 4 kpc of the Galactic center, the measured rotation velocity and line-of-sight velocity dispersion are similar to those of bulge field stars. We investigate claims that the metal-rich clusters are associated with the central Galactic bar by comparing the kinematics of the innermost clusters to that of the atomic hydrogen in the inner Galaxy. The longitude-velocity diagram of both metal-rich and metal-poor clusters bears a remarkable similarity to that of the gas, including the same non-circular motions which have traditionally been interpreted as evidence for a Galactic bar, or, alternatively, a non-axisymmetric bulge. However, uncertainties in the existing three-dimensional Galactocentric positions for most of the clusters do not yet allow an unambiguous discrimination between the competing scenarios of membership in a rigidly rotating bar, or in a bulge which is an oblate isotropic rotator. We conclude that the majority of metal-rich clusters within the central 4 kpc of the Galaxy are probably associated with the bulge/bar, and not the thick disk. (ABRIDGED)Comment: 18 pages, including 7 of 13 postscript figures. Figures 1-6 available at http://astro.caltech.edu/~pc. Accepted for publication in the Astronomical Journa

    The Milky Way: An Exceptionally Quiet Galaxy; Implications for the formation of spiral galaxies

    Get PDF
    [Abridged]We compare both the Milky Way and M31 galaxies to local external disk galaxies within the same mass range, using their relative locations in the planes formed by V_flat versus M_K, j_disk, and the average Fe abundance of stars in the galaxy outskirts. We find, for all relationships, that the MW is systematically offset by ~ 1 sigma, showing a significant deficiency in stellar mass, in angular momentum, in disk radius and [Fe/H] in the stars in its outskirts at a given V_flat. On the basis of their location in the M_K, V_flat, and R_d volume, the fraction of spirals like the MW is 7+/-1%, while M31 appears to be a "typical'' spiral. Our Galaxy appears to have escaped any significant merger over the last ~10 Gyrs which may explain why it is deficient by a factor 2 to 3 in stellar mass, angular momentum and outskirts metallicity and then, unrepresentative of the typical spiral. As with M31, most local spirals show evidence for a history shaped mainly by relatively recent merging. We conclude that the standard scenario of secular evolution is generally unable to reproduce the properties of most (if not all) spiral galaxies. However, the so-called "spiral rebuilding'' scenario proposed by Hammer et al. 2005 is consistent with the properties of both distant galaxies and of their descendants - the local spirals.Comment: 14 pages, 6 figures, to appear in Ap

    Chemically tagging the Hyades Supercluster: A homogeneous sample of F6-K4 kinematically selected northern stars

    Get PDF
    Stellar kinematic groups are kinematical coherent groups of stars that might have a common origin. These groups are dispersed throughout the Galaxy over time by the tidal effects of both Galactic rotation and disc heating, although their chemical content remains unchanged. The aim of chemical tagging is to establish that the abundances of every element in the analysis are homogeneus among the members. We study the case of the Hyades Supercluster to compile a reliable list of members (FGK stars) based on our chemical tagging analysis. For a total of 61 stars from the Hyades Supercluster, stellar atmospheric parameters (Teff, logg, xi, and [Fe/H]) are determined using our code called StePar, which is based on the sensitivity to the stellar atmospheric parameters of the iron EWs measured in the spectra. We derive the chemical abundances of 20 elements and find that their [X/Fe] ratios are consistent with Galactic abundance trends reported in previous studies. The chemical tagging method is applied with a carefully developed differential abundance analysis of each candidate member of the Hyades Supercluster, using a well-known member of the Hyades cluster as a reference (vB 153). We find that only 28 stars (26 dwarfs and 2 giants) are members, i.e. that 46% of our candidates are members based on the differential abundance analysis. This result confirms that the Hyades Supercluster cannot originate solely from the Hyades cluster.Comment: A&A, in pres

    Dynamics of Gaseous Disks in a Non-axisymmetric Dark Halo

    Full text link
    The dynamics of a galactic disk in a non-axisymmetric (triaxial) dark halo is studied in detail using high-resolution, numerical, hydrodynamical models. A long-lived, two-armed spiral pattern is generated for a wide range of parameters. The spiral structure is global, and the number of turns can be two or three, depending on the model parameters. The morphology and kinematics of the spiral pattern are studied as functions of the halo and disk parameters. The spiral structure rotates slowly, and its angular velocity varies quasi-periodically. Models with differing relative halo masses, halo semi-axis ratios, distributions of matter in the disk, Mach numbers in the gaseous component, and angular rotational velocities of their halos are considered.Comment: 22 pages, 11 figure

    Detailed Analysis of Nearby Bulgelike Dwarf Stars III. Alpha and Heavy-element abundances

    Full text link
    The present sample of nearby bulgelike dwarf stars has kinematics and metallicities characteristic of a probable inner disk or bulge origin. Ages derived by using isochrones give 10-11 Gyr for these stars and metallicities are in the range -0.80< [Fe/H]< +0.40. We calculate stellar parameters from spectroscopic data, and chemical abundances of Mg, Si, Ca, Ti, La, Ba, Y, Zr and Eu are derived by using spectrum synthesis. We found that [alpha-elements/Fe] show different patterns depending on the element. Si, Ca and Ti-to-iron ratios decline smoothly for increasing metallicities, and follow essentially the disk pattern. O and Mg, products of massive supernovae, and also the r-process element Eu, are overabundant relative to disk stars, showing a steeper decline for metallicities [Fe/H] > -0.3 dex. [s-elements/Fe] roughly track the solar values with no apparent trend with metallicity for [Fe/H] < 0, showing subsolar values for the metal rich stars. Both kinematical and chemical properties of the bulgelike stars indicate a distinct identity of this population when compared to disk stars.Comment: 21 pages, 9 figures, to appear in Ap

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Increases in condomless sex in the Swiss HIV Cohort Study.

    Get PDF
    Condomless sex is a key driver of sexually transmitted diseases. In this study, we assess the long-term changes (2000-2013) of the occurrence of condomless sex among human immunodeficiency virus (HIV)-infected individuals enrolled in the Swiss HIV Cohort study. The frequencies with which HIV-infected individuals reported condomless sex were either stable or only weakly increasing for 2000-2008. For 2008-2013, these rates increased significantly for stable relationships among heterosexuals and men who have sex with men (MSM) and for occasional relationships among MSM. Our results highlight the increasing public health challenge posed by condomless sex and show that condomless sex has been increasing even in the most recent years
    corecore