29 research outputs found

    An objective approach for Burkholderia pseudomallei strain selection as challenge material for medical countermeasures efficacy testing

    Get PDF
    Burkholderia pseudomallei is the causative agent of melioidosis, a rare disease of biodefense concern with high mortality and extreme difficulty in treatment. No human vaccines are available that protect against B. pseudomallei infection, and with the current limitations of antibiotic treatment, the development of new preventative and therapeutic interventions is crucial. Although clinical trials could be used to test the efficacy of new medical countermeasures (MCMs), the high mortality rates associated with melioidosis raises significant ethical issues concerning treating individuals with new compounds with unknown efficacies. The US Food and Drug Administration (FDA) has formulated a set of guidelines for the licensure of new MCMs to treat diseases in which it would be unethical to test the efficacy of these drugs in humans. The FDA “Animal Rule” 21 CFR 314 calls for consistent, well-characterized B. pseudomallei strains to be used as challenge material in animal models. In order to facilitate the efficacy testing of new MCMs for melioidosis using animal models, we intend to develop a well-characterized panel of strains for use. This panel will comprise of strains that were isolated from human cases, have a low passage history, are virulent in animal models, and are well-characterized phenotypically and genotypically. We have reviewed published and unpublished data on various B. pseudomallei strains to establish an objective method for selecting the strains to be included in the panel of B. pseudomallei strains with attention to five categories: animal infection models, genetic characterization, clinical and passage history, and availability of the strain to the research community. We identified 109 strains with data in at least one of the five categories, scored each strain based on the gathered data and identified six strains as candidate for a B. pseudomallei strain panel

    Genome sequence of Burkholderia pseudomallei NCTC 13392

    Get PDF
    Here, we describe the draft genome sequence of Burkholderia pseudomallei NCTC 13392. This isolate has been distributed as K96243, but distinct genomic differences have been identified. The genomic sequence of this isolate will provide the genomic context for previously conducted functional studies

    In vivo and in vitro immune responses against Francisella tularensis vaccines are comparable among Fischer 344 rat substrains

    Get PDF
    Identifying suitable animal models and standardizing preclinical methods are important for the generation, characterization, and development of new vaccines, including those against Francisella tularensis. Non-human primates represent an important animal model to evaluate tularemia vaccine efficacy, and the use of correlates of vaccine-induced protection may facilitate bridging immune responses from non-human primates to people. However, among small animals, Fischer 344 rats represent a valuable resource for initial studies to evaluate immune responses, to identify correlates of protection, and to screen novel vaccines. In this study, we performed a comparative analysis of three Fischer rat substrains to determine potential differences in immune responses, to evaluate methods used to quantify potential correlates of protection, and to evaluate protection after vaccination. To this end, we took advantage of data previously generated using one of the rat substrains by evaluating two live vaccines, LVS and F. tularensis SchuS4-ΔclpB (ΔclpB). We compared immune responses after primary vaccination, adaptive immune responses upon re-stimulation of leukocytes in vitro, and sensitivity to aerosol challenge. Despite some detectable differences, the results highlight the similarity of immune responses to tularemia vaccines and challenge outcomes between the three substrains, indicating that all offer acceptable and comparable approaches as animal models to study Francisella infection and immunity

    Complete genome sequence of the encephalomyelitic Burkholderia pseudomallei strain MSHR305

    Get PDF
    We describe the complete genome sequence of Burkholderia pseudomallei MSHR305, a clinical isolate taken from a fatal encephalomyelitis case, a rare form of melioidosis. This sequence will be used for comparisons to identify the genes that are involved in neurological cases

    Complete genome sequence of the encephalomyelitic Burkholderia pseudomallei strain MSHR305

    Get PDF
    We describe the complete genome sequence of Burkholderia pseudomallei MSHR305, a clinical isolate taken from a fatal encephalomyelitis case, a rare form of melioidosis. This sequence will be used for comparisons to identify the genes that are involved in neurological cases

    Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest : Why inventory is a vital science

    Get PDF
    Study of all flies (Diptera) collected for one year from a four-hectare (150 x 266 meter) patch of cloud forest at 1,600 meters above sea level at Zurqui de Moravia, San Jose Province, Costa Rica (hereafter referred to as Zurqui), revealed an astounding 4,332 species. This amounts to more than half the number of named species of flies for all of Central America. Specimens were collected with two Malaise traps running continuously and with a wide array of supplementary collecting methods for three days of each month. All morphospecies from all 73 families recorded were fully curated by technicians before submission to an international team of 59 taxonomic experts for identification. Overall, a Malaise trap on the forest edge captured 1,988 species or 51% of all collected dipteran taxa (other than of Phoridae, subsampled only from this and one other Malaise trap). A Malaise trap in the forest sampled 906 species. Of other sampling methods, the combination of four other Malaise traps and an intercept trap, aerial/hand collecting, 10 emergence traps, and four CDC light traps added the greatest number of species to our inventory. This complement of sampling methods was an effective combination for retrieving substantial numbers of species of Diptera. Comparison of select sampling methods (considering 3,487 species of non-phorid Diptera) provided further details regarding how many species were sampled by various methods. Comparison of species numbers from each of two permanent Malaise traps from Zurqui with those of single Malaise traps at each of Tapanti and Las Alturas, 40 and 180 km distant from Zurqui respectively, suggested significant species turnover. Comparison of the greater number of species collected in all traps from Zurqui did not markedly change the degree of similarity between the three sites, although the actual number of species shared did increase. Comparisons of the total number of named and unnamed species of Diptera from four hectares at Zurqui is equivalent to 51% of all flies named from Central America, greater than all the named fly fauna of Colombia, equivalent to 14% of named Neotropical species and equal to about 2.7% of all named Diptera worldwide. Clearly the number of species of Diptera in tropical regions has been severely underestimated and the actual number may surpass the number of species of Coleoptera. Various published extrapolations from limited data to estimate total numbers of species of larger taxonomic categories (e.g., Hexapoda, Arthropoda, Eukaryota, etc.) are highly questionable, and certainly will remain uncertain until we have more exhaustive surveys of all and diverse taxa (like Diptera) from multiple tropical sites. Morphological characterization of species in inventories provides identifications placed in the context of taxonomy, phylogeny, form, and ecology. DNA barcoding species is a valuable tool to estimate species numbers but used alone fails to provide a broader context for the species identified.Peer reviewe

    Comprehensive inventory of true flies (Diptera) at a tropical site

    Get PDF
    Estimations of tropical insect diversity generally suffer from lack of known groups or faunas against which extrapolations can be made, and have seriously underestimated the diversity of some taxa. Here we report the intensive inventory of a four-hectare tropical cloud forest in Costa Rica for one year, which yielded 4332 species of Diptera, providing the first verifiable basis for diversity of a major group of insects at a single site in the tropics. In total 73 families were present, all of which were studied to the species level, providing potentially complete coverage of all families of the order likely to be present at the site. Even so, extrapolations based on our data indicate that with further sampling, the actual total for the site could be closer to 8000 species. Efforts to completely sample a site, although resource-intensive and time-consuming, are needed to better ground estimations of world biodiversity based on limited sampling

    Data_Sheet_1_In vivo and in vitro immune responses against Francisella tularensis vaccines are comparable among Fischer 344 rat substrains.PDF

    No full text
    Identifying suitable animal models and standardizing preclinical methods are important for the generation, characterization, and development of new vaccines, including those against Francisella tularensis. Non-human primates represent an important animal model to evaluate tularemia vaccine efficacy, and the use of correlates of vaccine-induced protection may facilitate bridging immune responses from non-human primates to people. However, among small animals, Fischer 344 rats represent a valuable resource for initial studies to evaluate immune responses, to identify correlates of protection, and to screen novel vaccines. In this study, we performed a comparative analysis of three Fischer rat substrains to determine potential differences in immune responses, to evaluate methods used to quantify potential correlates of protection, and to evaluate protection after vaccination. To this end, we took advantage of data previously generated using one of the rat substrains by evaluating two live vaccines, LVS and F. tularensis SchuS4-ΔclpB (ΔclpB). We compared immune responses after primary vaccination, adaptive immune responses upon re-stimulation of leukocytes in vitro, and sensitivity to aerosol challenge. Despite some detectable differences, the results highlight the similarity of immune responses to tularemia vaccines and challenge outcomes between the three substrains, indicating that all offer acceptable and comparable approaches as animal models to study Francisella infection and immunity.</p
    corecore