36,356 research outputs found

    Fusing Audio, Textual and Visual Features for Sentiment Analysis of News Videos

    Full text link
    This paper presents a novel approach to perform sentiment analysis of news videos, based on the fusion of audio, textual and visual clues extracted from their contents. The proposed approach aims at contributing to the semiodiscoursive study regarding the construction of the ethos (identity) of this media universe, which has become a central part of the modern-day lives of millions of people. To achieve this goal, we apply state-of-the-art computational methods for (1) automatic emotion recognition from facial expressions, (2) extraction of modulations in the participants' speeches and (3) sentiment analysis from the closed caption associated to the videos of interest. More specifically, we compute features, such as, visual intensities of recognized emotions, field sizes of participants, voicing probability, sound loudness, speech fundamental frequencies and the sentiment scores (polarities) from text sentences in the closed caption. Experimental results with a dataset containing 520 annotated news videos from three Brazilian and one American popular TV newscasts show that our approach achieves an accuracy of up to 84% in the sentiments (tension levels) classification task, thus demonstrating its high potential to be used by media analysts in several applications, especially, in the journalistic domain.Comment: 5 pages, 1 figure, International AAAI Conference on Web and Social Medi

    Quantized fields and gravitational particle creation in f(R) expanding universes

    Get PDF
    The problem of cosmological particle creation for a spatially flat, homogeneous and isotropic Universes is discussed in the context of f(R) theories of gravity. Different from cosmological models based on general relativity theory, it is found that a conformal invariant metric does not forbid the creation of massless particles during the early stages (radiation era) of the Universe.Comment: 14 pages, 2 figure

    Shadowing and Absorption Effects on J/psi Production in dA Collisions

    Full text link
    We study medium modifications of J/psi production in cold nuclear media in deuterium-nucleus collisions. We discuss several parameterizations of the modifications of the parton densities in the nucleus, known as shadowing, an initial-state effect. We also include absorption of the produced J/psi by nucleons, a final-state effect. Both spatially homogeneous and inhomogeneous shadowing and absorption are considered. We use the number of binary nucleon-nucleon collisions as a centrality measure. Results are presented for d+Au collisions at sqrt{S_{NN}} = 200 GeV and for d+Pb collisions at sqrt{S_{NN}} = 6.2 TeV. To contrast the centrality dependence in pA and dA collisions, we also present pPb results at sqrt{S_{NN}} = 8.8 TeV.Comment: 22 pages, 11 figures, uses revte

    Bringing Together Gravity and the Quanta

    Get PDF
    Due to its underlying gauge structure, teleparallel gravity achieves a separation between inertial and gravitational effects. It can, in consequence, describe the isolated gravitational interaction without resorting to the equivalence principle, and is able to provide a tensorial definition for the energy-momentum density of the gravitational field. Considering the conceptual conflict between the local equivalence principle and the nonlocal uncertainty principle, the replacement of general relativity by its teleparallel equivalent can be considered an important step towards a prospective reconciliation between gravitation and quantum mechanics.Comment: 9 pages. Contribution to the proceedings of the Albert Einstein Century International Conference, Paris, 18-22 July, 200

    Chiral spin-orbital liquids with nodal lines

    Get PDF
    Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba_2YMoO_6.Comment: 5 pages + supplementary materia

    Phantom Accretion by Black Holes and the Generalized Second Law of Thermodynamics

    Full text link
    The accretion of a phantom fluid with non-zero chemical potential by black holes is discussed with basis on the Generalized Second Law of thermodynamics. For phantom fluids with positive temperature and negative chemical potential we demonstrate that the accretion process is possible, and that the condition guaranteeing the positiveness of the phantom fluid entropy coincides with the one required by Generalized Second Law. In particular, this result provides a complementary confirmation that cosmological phantom fluids do not need to have negative temperatures
    corecore