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The problem of cosmological particle creation for a spatially flat, homogeneous and isotropic universes is
discussed in the context of f (R) theories of gravity. Different from cosmological models based on general
relativity theory, it is found that a conformal invariant metric does not forbid the creation of massless
particles during the early stages (radiation era) of the universe.
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1. Introduction

It is widely believed that the possible emergence of space and
time trough a cosmic singularity and the presence of horizons
in the Friedman–Robertson–Walker (FRW) models strongly suggest
that matter and radiation need to be somehow created in order to
overcome some basic conceptual difficulties of big-bang cosmol-
ogy [1]. In these connections, the process of matter creation in an
expanding universe has been extensively discussed in the last four
decades either from a macroscopic, as well as from microscopic
viewpoints [2–18].

Macroscopically, the matter creation was extensively investi-
gated as a byproduct of bulk viscosity processes near the Planck
era as well as in the slow-rollover phase of the new inflation-
ary scenario [2–5]. Later on, the first self-consistent macroscopic
formulation of the matter creation process was put forward by
Prigogine and coworkers [6] and formulated in a covariant way by
Calvão et al. [7] with basis on the relativistic non-equilibrium ther-
modynamics. In comparison to the standard equilibrium equations,
the process of creation at the expense of the gravitational field is
described by two new ingredients: a balance equation for the par-
ticle number density and a negative pressure term in the stress
tensor. Such quantities are related to each other in a very defi-
nite way by the second law of thermodynamics. In particular, the
creation pressure depends on the creation rate and may operate,
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at level of Einstein’s equations, to prevent either a spacetime sin-
gularity [6,8] or to generate an early inflationary phase [9]. More
recently, such formulation has also been applied to explain the late
time accelerating stage of the universe and other complementary
observations [10,11].

Microscopically, after the pioneering work of Parker [12], the
quantum process of particle creation in the course of the cosmo-
logical expansion has also been studied by several authors [13–
18]. These ‘Parker Particles’ are created because, according to the
covariant equations of the fields in the Heisenberg picture, the
positive and negative frequency parts of the fields become mixed
during the universe expansion, so that the creation and annihila-
tion operators at one time t1 are linear combinations of those ones
at an earlier time t2, resulting at first, in a particle production.

One of the most interesting results from Parker’s work is that
in a radiation dominated universe, the positive- and negative-
frequency mode functions for massless fields are not mixed in the
course of the expansion due to the conformal invariance of the
metric. In particular, this means that there is no creation of mass-
less particles, either of zero or non-zero spin. Viewed in another
way, the dispersion relation in Fourier space is exactly the same
one of the flat Minkowski space, and, as such, a wave propagation
of a massless particle is not accompanied by particle production.
As a consequence, in the GR framework, no photon, graviton or
any other kind of massless particles are produced in the radiation
dominated, isotropic FRW universe by purely expanding effects at
early times [17].

Usually, the calculations of particle production deal with com-
paring the particle number at asymptotically early and late times,
or with respect to the vacuum states defined in two different
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frames and do not involve any loop calculation. However, the main
problem one encounters when treating quantization in expand-
ing backgrounds concerns the interpretation of the field theory
in terms of particles. The absence of Poincaré group symmetry in
curved spacetime leads to the problem of the definition of parti-
cles and vacuum states. The problem may be solved by using the
method of the diagonalization of instantaneous Hamiltonian by a
Bogoliubov transformation, which (with a suitable boundary condi-
tion) leads to finite results for the number of created particles [18].

On the other hand, the major developments concerning the
study of particle production in curved background are concen-
trated in the standard general relativity. Recently, non-standard
gravity theories have been proposed as an alternative to explain
the present accelerating stage of the universe only with cold dark
matter, that is, with no appealing to the existence of dark energy.
This reduction of the so-called dark sector is naturally obtained in
f (R) gravity theories. In such an approach, the curvature scalar R
in the Einstein–Hilbert action is replaced by a general function
f (R), so that the Einstein field equation is recovered as a particu-
lar case [20,21].

A basic motivation for this kind of generalization is the fact that
higher order terms in curvature invariants have to be added to the
effective Lagrangian of the gravitational field when quantum cor-
rections are taken into account [22–24]. Two different formalisms
are usually adopted to study f (R) theories. In the so-called met-
ric approach, the equations of motion are obtained by varying the
metric tensor, while in the Palatini formalism, one considers the
metric and the affine connection to be independent of each other,
and one has to vary the action with respect to both of them. These
two methods lead to the same equations only if f (R) is a linear
function of R (GR case). The metric approach leads to fourth-order
equations driving the evolution of the scale factor while the Pala-
tini method leads to second-order equations, so that it is appealing
because of its simplicity. Actually, for many interesting examples,
it has been argued that some problems of instability are present in
the metric approach [25], although some recent works have cast
doubts on the existence of such instabilities [26]. In what follows,
we will focus our attention on the Palatini formalism and a sim-
ple power law type of f (R). As shown by Vollick [20] using the
Palatine approach, the inclusion of a R−1 term in the action leads
to a theory of gravity that predicts late time accelerated expansion
of the universe. Sotiriou [27] also demonstrated that a R3 term
can account for an early time inflation, contrary to a R2 type
discussed by many authors (see Meng and Wang [28] and refer-
ences therein). More recently, Miranda et al. discussed a viable
f (R) cosmology based on a logarithm contribution of the scale fac-
tor which emerges naturally as a limiting case of a general power
law [29].

In this Letter we will present only the basic ideas and results on
the scalar particle creation on expanding universe in the view of a
Rn type f (R) theory. In brief, our basic result can be stated as fol-
lows: massless particles in a radiation dominated universe can be
produced by purely expanding effects in generic f (R) theories. In
other words, Parker’s result is valid only in the context of general
relativity.

2. Quantization in expanding backgrounds

The canonical quantization of a scalar field in curved back-
grounds follows in straight analogy with the quantization in a
flat Minkowski background with the gravitational metric treated
as a classical external field which is generally non-homogeneous
and non-stationary. Let us summarize the basic results for a linear
Klein–Gordon scalar field in a spatially flat FRW geometry (in our
units c = 1).
A real minimally coupled massive scalar field φ is described in
a curved spacetime by the action [14,15]

S = 1

2

∫ √−g d4x
[

gαβ∂αφ∂βφ − m2φ2]. (1)

In terms of the conformal time η, the metric tensor gμν is con-
formally equivalent to the Minkowski metric ημν , so that the line
element is ds2 = a2(η)ημν dxμ dxν , where a(η) is the cosmological
scale factor. Writing the field φ(η, x) = a(η)−1χ , the equation of
motion that follows from the action (1) is

χ ′′ − ∇2χ +
(

m2a2 − a′′

a

)
χ = 0, (2)

where the prime denotes derivatives with respect to the conformal
time η. We can see that the field χ obeys the same equation of
motion as a massive scalar field in Minkowski spacetime, but now
with a time dependent effective mass,

m2
eff (η) ≡ m2a2 − a′′

a
. (3)

This time dependent mass accounts for the interaction between
the scalar field and the gravitational field. The energy of the field χ
is not conserved (its action is explicitly time-dependent), and,
more important, its quantization leads to particle creation at the
expense of the classical gravitational background. However, for a
FRW type universe dominated by radiation one finds that a′′ = 0.
Therefore, for a massless scalar field, there is no particle produc-
tion since Eq. (2) reduces to same one of the Minkowski spacetime.
This is the Parker result which was clearly deduced with basis on
the general relativity [12]. In other words, by assuming the gen-
eral relativity, the gravitational field of the universe at early stages
is unable to work as a pump supplying energy for massless scalar
fields.

After a Fourier expansion of Eq. (2), we are left with the mode
equation

χ ′′
k + ω2

k (η)χk = 0, (4)

with ω2
k (η) ≡ k2 + m2

eff . The solutions of the above equation give
the positive- and negative-frequency modes. Following standard
lines, the quantization can be carried out by imposing equal-
time commutation relations for the scalar field χ and its canon-
ically conjugate momentum π ≡ χ ′ , namely [χ(x, η),π(y, η)] =
iδ(x − y), and by implementing secondary quantization in the
so-called Fock representation. After convenient Bogoliubov trans-
formations, one obtains the transition amplitudes for the vacuum
state and the associated spectrum of the produced particles in a
non-stationary background [14,15]. Many conceptual aspects re-
lated to possible ambiguities arising from the dependence of the
particle number density with the reference frame and their con-
nections with moving detectors have also attracted attention in the
literature (see, for instance, Refs. [14,18,19]).

3. Expanding universe in f (R) theories

Let us briefly recall how the evolution of the scale factor a(η)

is modified in the context of f (R) theories. Following Palatini’s
approach, where the metric and the connection are independent
variables, the generalized Einstein equations for a self-gravitating
fluid are given by [18,20,21,27,28]

f,R Rμν(Γ ) − 1

2
f (R)gμν = 8πGTμν, (5)

where f,R ≡ df (R)/dR , Rμν(Γ ) is the Ricci tensor of any indepen-
dent torsionless connection Γ , R ≡ gαβ Rαβ(Γ ) is the generalized
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Ricci scalar (which reduces to the ordinary Ricci scalar R̄ only for
some special cases) and Tμν is the energy–momentum tensor. The
trace of the above equation reads

f,R(R)R − 2 f (R) = 8πGτ , (6)

where τ ≡ tr Tμν , and for a perfect fluid it is τ = ρ − 3p. The
above identity controls solutions of Eq. (5) in the sense that, given
a f function we can obtain solutions R depending on τ . In certain
special cases these solutions can be obtained explicitly. In partic-
ular, for a radiation or vacuum dominated universe the solution is
simply R = 0 or R = const, so that the solutions of the generalized
Friedman equation can be explicitly obtained.

Without loss of generality, we can choose f (R) in the following
form:

f (R) = R + g(R). (7)

In the general case of a medium with equation of state in the
form, p = ωρ , one obtains a generalized FRW differential equa-
tion in terms of R(Γ ). With the help of the trace identity as given
by Eq. (6), we can write the following equation for the expansion
of the scale factor in the conformal time η:

a′′

a
+ (� − 1)

(
a′

a

)2

+ a2G(�, R) = 0, (8)

with

G(�, R) = − g

6
+ �

6
(Rg,R − g)

+ (� − 1)

[
H2 g,R + R ′

a
g,R R + 1

4

(
R ′

a

)2 g2
,R R

1 + g,R

]
,

where � = (1 + 3ω)/2 and H is the Hubble parameter. Note that
if g(R) = 0 then G(�, R) = 0 and the general relativistic FRW dif-
ferential equation for the scale factor is recovered [30]. It should
also be recalled that only in the case τ = 0 (radiation), we have R
equal to the ordinary Ricci scalar R̄ . As we shall see in the next
section, the solutions of Eq. (8) in this case are easily obtained for
some special expressions of g(R).

4. Particle creation in f (R) gravity

To begin with we consider the particle creation process in a
radiation dominated universe, ω = 1/3 (or � = 1) for which R = R̄ .
In this case, Eq. (8) is simplified to:

a′′

a
+ a2G(1, R̄) = 0, (9)

where

G(1, R̄) = − g

6
+ 1

6
(R̄ g,R − g), (10)

and R̄ = −6a′′/a3. Inserting Eq. (9) into Eq. (3) we see that G acts
exactly as an effective mass, and, therefore, it works like a source
of particle production even in the massless case.

Let us now assume that the g(R) function is a power law

g(R) = βRn (0 < n < 2), (11)

where β is a dimensional constant. In this case Eq. (9) takes the
form

a′′

a
+ 1

6

[
β(n − 2)

]− 1
n−1 a2 = 0, (12)

or, equivalently,
a′′ = 1

6α
a3, α = [

β(2 − n)
] 1

n−1 . (13)

For simplicity, in what follows it will be assumed that β is pos-
itive. An interesting particular solution of the above equation is

a(η) = −
√

12α

η
, −∞ < η < 0, (14)

which has exactly the same form of a de Sitter expansion in gen-
eral relativity [31].

Now, inserting the above result into Eqs. (3) and (4), we find
that the mode function satisfies

χ ′′
k +

[
k2 − (

1 − 6αm2) 2

η2

]
χk = 0. (15)

This is a second order differential equation whose independent so-
lutions, χ1k and χ2k , are given by

χ1k(η) = c1
√|η| Jν

(
k|η|), (16)

χ2k(η) = c2
√|η|Yν

(
k|η|), (17)

where Jν , Yν are the Bessel functions of first and second kind, re-
spectively, and the mass dependent parameter, ν ≡ √

9/4 − 12αm2,
defining the order of the functions. For all times, these modes must
be normalized according to

Wk(η) ≡ χ1k(η)χ ′
2k(η) − χ ′

1k(η)χ2k(η) = −2i. (18)

It is also worth noticing that Eq. (15) has some interesting fea-
tures. First, it has exactly the same form obeyed by the mode
functions in the case of a de Sitter cosmology in the framework of
general relativity. In other words, we start with a radiation domi-
nated universe in a f (R) theory and the evolution is described by
the same equation of a pure de Sitter universe in the linear case.
Particle creation in the de Sitter universe in the context of GR has
been studied by several authors [32–34]. Another interesting fea-
ture of Eq. (15) is that it does not depends on the parameters β

and n in the masssless limit.
The Bogoliubov coefficients can be calculated and a straightfor-

ward calculation leads to the final expression for the number of
particles created in the k mode [32,34]:

Nk(η) = 1

2|ωk(η)|
∣∣χ ′

2k(η)
∣∣2 + |ωk(η)|

2

∣∣χ2k(η)
∣∣2 − 1

2
. (19)

This expression correctly reproduces the initial vacuum condition
Nk(η → −∞) = 0.

The concentration of created particles is readily obtained by in-
tegrating over all the modes:

n = 1

a(η)3

∫
Nk(η)d3k. (20)

Now it is easy to calculate the particle creation, at least for
some specific cases.

4.1. Massive case

In order to illustrate the phenomenon of particle creation in
FRW type cosmological models inspired by f (R) gravity, let us
first consider some simple example for massive particles. In the
case ν = 1, that is, for m2 = 5/48α, it is easy to check that the
normalized solutions are:

χ1k(η) =
√

2

k

J1(k|η|)√
Y1(k|η|) J0(k|η|) − Y0(k|η|) J1(k|η|) , (21)

χ2k(η) = i

√
2

k

Y1(k|η|)√
Y (k|η|) J (k|η|) − Y (k|η|) J (k|η|) , (22)
1 0 0 1
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Fig. 1. Massive case. Spectrum of the created particles as function of the conformal
time η for two different values of the wavenumber k, from left to right, k = 1 and
k = 2 respectively. The spikes represent the points where the frequency vanishes
and Nk diverges.

and the corresponding spectrum of created particles is readily ob-
tained by inserting the above solutions into (19).

In Fig. 1, we show the spectrum for two different wavenumbers.
The spikes represent the points where the frequency vanishes and
Nk diverges.

Another interesting case is m2 = 1/6α which is conformally
related to flat spacetime. The frequency vanishes for this choice
of mass so that the modes are plane waves at all times, and,
therefore, there is no particle production. The absence of matter
creation in this f (R) massive case is similar to the classic result
derived by Parker in general relativity for the massless case [12].
Implicitly, it also suggests the possibility of massless particles pro-
duction during the radiation dominated phase in f (R) models. In
order to show that, let us now calculate the spectrum of the cre-
ated massless particles.

4.2. Massless case

The main result of this Letter is related to the creation of mass-
less particles (m = 0). In this case, the normalized mode functions
(16) and (17) takes the following forms

χ1k(η) = 1√
k

(
1 + i

kη

)
eikη, (23)

χ2k(η) = 1√
k

(
1 − i

kη

)
e−ikη. (24)

Now, inserting the above expressions into Eq. (19) we obtain
the spectrum of created particles for each mode k:

Nk(η) = −1

2
− 1

4

∣∣k2η2 − 2
∣∣1/2

(
1

kη
+ 1

k3η3

)

− 1

4|k2η2 − 2|1/2

(
kη − 1

kη
+ 1

k3η3

)
. (25)

In Fig. 2 we display the graphic of this function for some values
of k. Apart from the spikes which occur due to the vanishing of the
frequency, we also see that the number of created particles grows
in the limit η → 0.
Fig. 2. Massless case. Spectrum of created particles as a function of the conformal
time η for different values of the wavenumber k, from left to the right, k = 1, k = 2
and k = 3 respectively. The spikes represents the points where the frequency van-
ishes and Nk diverges.

5. Concluding remarks

Due to the discovery of the accelerating universe at low red-
shifts, an increasing attention has been paid to f (R) gravity as a
possibility to reduce the so-called cosmological dark sector. In this
kind of cosmology the universe can be accelerating driven only by
cold dark matter.

In this work, assuming that the deviations from general relativ-
ity are described by a power law, we have addressed the problem
of particle creation in f (R) homogeneous and isotropic cosmolo-
gies dominated by a fluid obeying a ω-type equation of state. The
mode equation in such background was derived and their general
solution explicitly obtained. As an illustration, we have calculated
the spectrum of created particles for a radiation dominated uni-
verse considering the cases of massive and massless particles.

Unlike the Parker results which are based on the standard gen-
eral relativity, we have also explicitly shown that massless parti-
cles can be produced during the radiation dominated phase in the
framework of f (R) cosmologies. This result is not valid only for
the case of a scalar field as discussed here. Actually, due to the
new contributions to the FRW differential equation, one may show
that the positive- and negative-frequency parts of the fields be-
come mixed in an expanding f (R) cosmology thereby leading to
the creation of massless particles of non-zero spin even at early
times.
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