84,061 research outputs found

    Sublethal Behavioral and Physiological Effects of the Biomedical Bleeding Process on the American Horseshoe Crab, Limulus polyphemus

    Get PDF
    The hemolymph of the American horseshoe crab, Limulus polyphemus, is harvested from over 500,000 animals annually to produce Limulus amebocyte lysate (LAL), a medically important product used to detect pathogenic bacteria. Declining abundance of spawning Limulus females in heavily harvested regions suggests deleterious effects of this activity, and while mortality rates of the harvest process are known to be 10%–30%, sublethal behavioral and physiological effects are not known. In this study, we determined the impact of the harvest process on locomotion and hemocyanin levels of 28 female horseshoe crabs. While mortality rates after bleeding (18%) were similar to previous studies, we found significant decreases in the linear and angular velocity of freely moving animals, as well as changes in their activity levels and expression of circatidal behavioral rhythms. Further, we found reductions in hemocyanin levels, which may alter immune function and cuticle integrity. These previously unrecognized behavioral and physiological deficits suggest that the harvest of LAL may decrease female fitness, and thus may contribute to the current population decline

    Multiresolution pattern recognition of small volcanos in Magellan data

    Get PDF
    The Magellan data is a treasure-trove for scientific analysis of venusian geology, providing far more detail than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations. However, at this point, planetary scientists are being overwhelmed by the sheer quantities of data collected--data analysis technology has not kept pace with our ability to collect and store it. In particular, 'small-shield' volcanos (less than 20 km in diameter) are the most abundant visible geologic feature on the planet. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 10(exp 5) to 10(exp 6) of these volcanos visible in the Magellan data. Identifying and studying these volcanos is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is very time-consuming. Hence, we have undertaken the development of techniques to partially automate this task. The goal is not the unrealistic one of total automation, but rather the development of a useful tool to aid the project scientists. The primary constraints for this particular problem are as follows: (1) the method must be reasonably robust; and (2) the method must be reasonably fast. Unlike most geological features, the small volcanos of Venus can be ascribed to a basic process that produces features with a short list of readily defined characteristics differing significantly from other surface features on Venus. For pattern recognition purposes the relevant criteria include the following: (1) a circular planimetric outline; (2) known diameter frequency distribution from preliminary studies; (3) a limited number of basic morphological shapes; and (4) the common occurrence of a single, circular summit pit at the center of the edifice

    Land use/vegetation mapping in reservoir management. Merrimack River basin

    Get PDF
    This report consists of an analysis of: ERTS-1 Multispectral Scanner imagery obtained 10 August 1973; Skylab 3 S190A and S190B photography, track 29, taken 21 September 1973; and RB-57 high-altitude aircraft photography acquired 26 September 1973. These data products were acquired on three cloud-free days within a 47-day period. The objectives of this study were: (1) to make quantitative comparisons between high-altitude aircraft photography and satellite imagery, and (2) to demonstrate the extent to which high resolution (S190A and B) space-acquired data can be used for land use/vegetation mapping and management of drainage basins

    Superconducting correlations in ultra-small metallic grains

    Full text link
    To describe the crossover from the bulk BCS superconductivity to a fluctuation-dominated regime in ultrasmall metallic grains, new order parameters and correlation functions, such as ``parity gap'' and ``pair-mixing correlation function'', have been recently introduced. In this paper, we discuss the small-grain behaviour of the Penrose-Onsager-Yang off-diagonal long-range order (ODLRO) parameter in a pseudo-spin representation. Relations between the ODLRO parameter and those mentioned above are established through analytical and numerical calculations.Comment: 7 pages, 1 figur

    Initial Stages of Bose-Einstein Condensation

    Full text link
    We present the quantum theory for the nucleation of Bose-Einstein condensation in a dilute atomic Bose gas. This quantum theory comfirms the results of the semiclassical treatment, but has the important advantage that both the kinetic and coherent stages of the nucleation process can now be described in a unified way by a single Fokker-Planck equation.Comment: Four pages of ReVTeX and no figure

    Quantum Cosmological Relational Model of Shape and Scale in 1-d

    Full text link
    Relational particle models are useful toy models for quantum cosmology and the problem of time in quantum general relativity. This paper shows how to extend existing work on concrete examples of relational particle models in 1-d to include a notion of scale. This is useful as regards forming a tight analogy with quantum cosmology and the emergent semiclassical time and hidden time approaches to the problem of time. This paper shows furthermore that the correspondence between relational particle models and classical and quantum cosmology can be strengthened using judicious choices of the mechanical potential. This gives relational particle mechanics models with analogues of spatial curvature, cosmological constant, dust and radiation terms. A number of these models are then tractable at the quantum level. These models can be used to study important issues 1) in canonical quantum gravity: the problem of time, the semiclassical approach to it and timeless approaches to it (such as the naive Schrodinger interpretation and records theory). 2) In quantum cosmology, such as in the investigation of uniform states, robustness, and the qualitative understanding of the origin of structure formation.Comment: References and some more motivation adde

    Comparison of Power Dependence of Microwave Surface Resistance of Unpatterned and Patterned YBCO Thin Film

    Full text link
    The effect of the patterning process on the nonlinearity of the microwave surface resistance RSR_S of YBCO thin films is investigated. With the use of a sapphire dielectric resonator and a stripline resonator, the microwave RSR_S of YBCO thin films was measured before and after the patterning process, as a function of temperature and the rf peak magnetic field in the film. The microwave loss was also modeled, assuming a Jrf2J_{rf}^2 dependence of ZS(Jrf)Z_S(J_{rf}) on current density JrfJ_{rf}. Experimental and modeled results show that the patterning has no observable effect on the microwave residual RSR_S or on the power dependence of RSR_S.Comment: Submitted to IEEE Trans. MT

    Skylab imagery: Application to reservoir management in New England

    Get PDF
    The author has identified the following significant results. S190B imagery is superior to the LANDSAT imagery for land use mapping and is as useful for level 1 and 2 land use mapping as the RB-57/RC8 high altitude imagery. Detailed land use mapping at levels 3 and finer from satellite imagery requires better resolution. For evaluating factors that are required to determine volume runoff potentials in a watershed, the S190B imagery was found to be as useful as the RB-57/RC8 high altitude aircraft imagery
    corecore