19,434 research outputs found

    Polarization-controlled single photons

    Get PDF
    Vacuum-stimulated Raman transitions are driven between two magnetic substates of a rubidium-87 atom strongly coupled to an optical cavity. A magnetic field lifts the degeneracy of these states, and the atom is alternately exposed to laser pulses of two different frequencies. This produces a stream of single photons with alternating circular polarization in a predetermined spatio-temporal mode. MHz repetition rates are possible as no recycling of the atom between photon generations is required. Photon indistinguishability is tested by time-resolved two-photon interference.Comment: 4 pages, 3 figure

    Contact and sum-rules in a near-uniform Fermi gas at unitarity

    Full text link
    We present an experimental study of the high-energy excitation spectra of unitary Fermi gases. Using focussed beam Bragg spectroscopy, we locally probe atoms in the central region of a harmonically trapped cloud where the density is nearly uniform, enabling measurements of the dynamic structure factor for a range of temperatures both below and above the superfluid transition. Applying sum-rules to the measured Bragg spectra, we resolve the characteristic behaviour of the universal contact parameter, C{\cal C}, across the superfluid transition. We also employ a recent theoretical result for the kinetic (second-moment) sum-rule to obtain the internal energy of gases at unitarity.Comment: 5 pages, 4 figure

    Analytic Reconstruction of heavy-quark two-point functions at O(\alpha_s^3)

    Full text link
    Using a method previously developed, based on the Mellin-Barnes transform, we reconstruct the two-point correlators in the vector, axial, scalar and pseudoscalar channels from the Taylor expansion at q^2=0, the threshold expansion at q^2=4m^2 and the OPE at q^2\rightarrow -\infty, where m is the heavy quark mass. The reconstruction is analytic and systematic and is controlled by an error function which becomes smaller as more terms in those expansions are known.Comment: 19 pages, 11 figure

    ERBS fuel addendum: Pollution reduction technology program small jet aircraft engines, phase 3

    Get PDF
    A Model TFE731-2 engine with a low emission, variable geometry combustion system was tested to compare the effects of operating the engine on Commercial Jet-A aviation turbine fuel and experimental referee broad specification (ERBS) fuels. Low power emission levels were essentially identical while the high power NOx emission indexes were approximately 15% lower with the EBRS fuel. The exhaust smoke number was approximately 50% higher with ERBS at the takeoff thrust setting; however, both values were still below the EPA limit of 40 for the Model TFE731 engine. Primary zone liner wall temperature ran an average of 25 K higher with ERBS fuel than with Jet-A. The possible adoption of broadened proprties fuels for gas turbine applications is suggested

    Pollution reduction technology program small jet aircraft engines, phase 3

    Get PDF
    A series of Model TFE731-2 engine tests were conducted with the Concept 2 variable geometry airblast fuel injector combustion system installed. The engine was tested to: (1) establish the emission levels over the selected points which comprise the Environmental Protection Agency Landing-Takeoff Cycle; (2) determine engine performance with the combustion system; and (3) evaulate the engine acceleration/deceleration characteristics. The hydrocarbon (HC), carbon monoxide (CO), and smoke goals were met. Oxides of nitrogen (NOx) were above the goal for the same configuration that met the other pollutant goals. The engine and combustor performance, as well as acceleration/deceleration characteristics, were acceptable. The Concept 3 staged combustor system was refined from earlier phase development and subjected to further rig refinement testing. The concept met all of the emissions goals

    Pollution Reduction Technology Program for Small Jet Aircraft Engines, Phase 2

    Get PDF
    A series of iterative combustor pressure rig tests were conducted on two combustor concepts applied to the AiResearch TFE731-2 turbofan engine combustion system for the purpose of optimizing combustor performance and operating characteristics consistant with low emissions. The two concepts were an axial air-assisted airblast fuel injection configuration with variable-geometry air swirlers and a staged premix/prevaporization configuration. The iterative rig testing and modification sequence on both concepts was intended to provide operational compatibility with the engine and determine one concept for further evaluation in a TFE731-2 engine

    Pollution reduction technology program for small jet aircraft engines, phase 1

    Get PDF
    A series of combustor pressure rig screening tests was conducted on three combustor concepts applied to the TFE731-2 turbofan engine combustion system for the purpose of evaluating their relative emissions reduction potential consistent with prescribed performance, durability, and envelope contraints. The three concepts and their modifications represented increasing potential for reducing emission levels with the penalty of increased hardware complexity and operational risk. Concept 1 entailed advanced modifications to the present production TFE731-2 combustion system. Concept 2 was based on the incorporation of an axial air-assisted airblast fuel injection system. Concept 3 was a staged premix/prevaporizing combustion system. Significant emissions reductions were achieved in all three concepts, consistent with acceptable combustion system performance. Concepts 2 and 3 were identified as having the greatest achievable emissions reduction potential, and were selected to undergo refinement to prepare for ultimate incorporation within an engine

    Nonproductive Events in Ring-Closing Metathesis Using Ruthenium Catalysts

    Get PDF
    The relative TONs of productive and nonproductive metathesis reactions of diethyl diallylmalonate are compared for eight different ruthenium-based catalysts. Nonproductive cross metathesis is proposed to involve a chain-carrying ruthenium methylidene. A second more-challenging substrate (dimethyl allylmethylallylmalonate) that forms a trisubstituted olefin product is used to further delineate the effect of catalyst structure on the relative efficiencies of these processes. A steric model is proposed to explain the observed trends

    Effects of NHC-Backbone Substitution on Efficiency in Ruthenium-Based Olefin Metathesis

    Get PDF
    series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through C−H activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate

    Stochastic Analysis of a Churn-Tolerant Structured Peer-to-Peer Scheme

    Full text link
    We present and analyze a simple and general scheme to build a churn (fault)-tolerant structured Peer-to-Peer (P2P) network. Our scheme shows how to "convert" a static network into a dynamic distributed hash table(DHT)-based P2P network such that all the good properties of the static network are guaranteed with high probability (w.h.p). Applying our scheme to a cube-connected cycles network, for example, yields a O(logN)O(\log N) degree connected network, in which every search succeeds in O(logN)O(\log N) hops w.h.p., using O(logN)O(\log N) messages, where NN is the expected stable network size. Our scheme has an constant storage overhead (the number of nodes responsible for servicing a data item) and an O(logN)O(\log N) overhead (messages and time) per insertion and essentially no overhead for deletions. All these bounds are essentially optimal. While DHT schemes with similar guarantees are already known in the literature, this work is new in the following aspects: (1) It presents a rigorous mathematical analysis of the scheme under a general stochastic model of churn and shows the above guarantees; (2) The theoretical analysis is complemented by a simulation-based analysis that validates the asymptotic bounds even in moderately sized networks and also studies performance under changing stable network size; (3) The presented scheme seems especially suitable for maintaining dynamic structures under churn efficiently. In particular, we show that a spanning tree of low diameter can be efficiently maintained in constant time and logarithmic number of messages per insertion or deletion w.h.p. Keywords: P2P Network, DHT Scheme, Churn, Dynamic Spanning Tree, Stochastic Analysis
    corecore