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FOREWORD

This document is the final report for work performed as an
addendum to the Phase III Pollution Reduction Technology Program
for Small Jet Aircraft Engines - Class Tl (Contract NAS3-20819).
This program addendum was conducted under the sponsorship and
direction of the National Aeronautics and Space Administration
(NASA) Lewis Research “enter and the AiResearch Manufacturing
Company of Arizona. Tk addendum program effort entailed evalua-
tion of emissions and performance results obtained when vsing an
Experimental Referee Broad-Specification (ERBS) fuel 1in the
Garrett TFE731~-2 engine with a low-emission combustion system, and
comparison of these results with those obtained using Jet A fuel
in the same engine.

.The authors wish to acknowledge the assistance and guidance
rendered by Mr. James S. Fear of the NASA Lewis Research Center,
who was the Project Manager for the program.

NOTE: Effective January 1, 1981, the company name
of AiResearch was changed to The Garrett
Turbine Engine Company.
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SUMMARY

A Model TFE731-2 engine with a low-emission, variable-
geometry combustion system was used to conduct a test to compare
the effects of operating the engine on Commercial Jet A aviation
turbine fuel and Experimental Referee Broad-Specification (ERES)
fuels. The engine was tested at the four Environmental Protec-~
tion Agency (EPA) Landing and Takeoff (LTO) cycle-power points
(taxi-idle, approach, climbout, and takeoff) on both fuels.
Engine performance, gaseous emissions, smoke, and combustion
liner wall temperature were measured.

The effect on engine performance was considered to be
insignificant, with less than a l-percent reduction in thrust
measured with ERBS fuel at a corrected Nl speed of 19,000 rpm
(takeoff). Low-power emission levels were essentially identical;
however, the high-power NO, emission indexes were approximately
l5-percent lower with the ERBS fuel. The exhaust smoke number
was approximately 50-percent higher with ERBS at the takeoff
thrust setting (31 for ERBS versus 22.5 for Jet A); however, both
values were still below the EPA limit of 40 for the Model TFE731
engine. Primary-zone liner wall temperature ran an average of
25 K higher with ERBS fuel than with Jet A.

The test produced encouraging results for the possible
adoption of broadened-properties fuels for gas turbine applica-
tions; however, extensive evaluation is still needed, especially
in the areas of fuel-nozzle clogging, spray perfc¢rmance over long
operating periods, low-temperature ignition, carbon formation,
and liner durability.
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INTRODUCTION

Increasing fuel costs and the desire to reduce our national
dependency on imported petroleum have prompted major research
efforts regarding the utilization of alternative fuels and fuels
maaufactured from resourxces other thon crude oil. With respect
to aviation gas turbine engines, this emphasis has been on using
fuels with broadened properties. Broadening the properties of
fuels may allow them to become less expensive to produce and/oz
to be produced from alternative sources. To establish practical
limits on broadened properties fuels, it is necessary to evaluate
engine nerformance when usiny proposed fuels and to determine the
degree of degradation, if any, in engine performance and durabil-
ity as a result of the fuel change. That was the intent of thls
program.

The program was conducted as an addendum to Phase III of the
NASA/AiResearch Pollution Reduction Technology Program (PRTP)
for Small Jet Aircraft Engines, The overall goal of the program
was to develop and demonstrate in engine tests an advanced tech-
nology combustion system that was capable of meeting the origi-
nally proposed EPA emission standards for Tl class engines, as
established on July 17, 1973 (Reference 1l). This was conducted
in three phases. Phase I involved the rig test screening of
three combustion concepts with several build iterations for their
emission-reduction potential (Reference 2). Phase II took the
two most promising concepts and further refined and optimized the
systems for low emissions and engine-compatible performance
(Reference 3). In Phase III, one of the combustor concepts, a
variable-geometry system, was selected to undergo engine testing
to verify emissions reductions and to evaluate engine performance
(Reference 4).

The alternative fuel addendum to Phase III involved the
engine testing of the final Phase III engine variable-geometry
combustion system on ERBS fuel and comparing the test results
with those obtained with Jet A aviation turbine fuel.
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CHAPTER I
PROGRAM PLAN AND TEST FUELS

The ERBS Fuel Addendum to the Phase III NASA/AiResearch PRT?
consisted of the following:

o Steady-state emissions and performance testing using
ERBS fuel supplied by NASA on a Model TFE731-2 Turbofan
engine with the Concept 2 variable-geometry combustion
system installed.

o Analysis and comparison of the ERBS test data with the
data previously taken using the same combustion system
using Jet A aviation turbine fuel.

The engine test using the ERBS fuel was conductad immedi-
ately following the test on Jet A aviation turbine fuel. Tests
were made at a total of four different engine power settings
corresponding to the points required for the LTO Environmental
Protection Agency Parameter (EPAP) calculations (taxi-idle,
approach, climbout, and takeoff). Smoke and engine-performarice
parameters were also recorded at these power settings. These
test conditions are shown in Table I.

NASA-supplied ERBS fuel was used for the test. This fuel
has a final boiling point of 621 K and an aromatic content of
29.7 percent by volume, as compared to 538 K and 17 percent,
respectively, for Jet A, Analyses of this fuel and Jet A are
shown in Table II for comparison.
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TABLE I. MODEL /TFE731-2 ENGINE DE5iGN DATA, SEA-LEVEL
STATIC, STANDARD~DAY CONDIVIONS.
Net Fuel Combustor Combustor Combustor
Thrust, | Flow | Inlet Total| Inlet Total Fuel/Air
Engine Mode kN kg/hr Temp., K [Pressure, KkPa Ratio
Taxi-idle 0.9 87.3 369.9 202.1 0.0105
Approach 4.7 |241.4 504.5 531.8 0.0115
Climbout 14.0 667.6 665.9 1301 0.0147
Takeoff 15.6 754.3 684.6 1425 0.0154
'L‘ABLI'Z‘: II. CBE&MICAL ANALYSIS OF E'RBS AND J!;'!‘ A B‘UBLS
ERBS Jet A
Hydrogen Content, (% wu) 13.09 13.57
Hydrogen/Carbon Weight Ratio 0.149 0.157
Aromatic Content (8 vol) 29.7 17.0 °
Naphthalene Content (% vol) - 1.6
Distillation Temperature ( K)
Initial Boiling Point 447 436
5 Percent 458 448
10 Percent 461 457
20 Percent 467 467
30 pPercent 472 473
40 Percent 478 479
50 Percent 486 486
60 Percent 494 493
70 Percent 506 501
80 Percent 832 508
90 Percent 562 521
95 Percent 591 531
End Point 621 538
Percent Distilled 97 98.5
Viscosity Centistokes at 10b°F 1.7 1.6
Freezing Point, K 253 "o
Flash Point, K 339 334
Lower Heating Vvalve, btu/lb 18,310 18,520
Gravity, °API (Sp Gr) at 60°F 37.8 (0.836) 41.3 (0.819)
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CHAPTER IX
EQUIPMENT AND EXPERIMENTAL PROCEDURES

Except for the use of the ERBS fuel, the equipment and
experimental procedures used in this addendum were identical to
those used in the NASA/AiResearch PRTP Phase III. & brief
description is included in the following paragraphs. A more
detailed description can be found in Reference 4,

Mode; TFE731-2 Engine Description

The Model TFE731-2 is a two~spool turbofan engine utilizing
a reverse-flow, annular combustion chamber. The engine is rated
at 15.6 kN thrust and has a bypass ratio of 2,67. The front fan
is coupled to the low-pressure (LP) compressor through a plane-
tary gearbox that reduces the fan speed. The LP compressor is a
four~stage axial configuration that is fo’lowed by a single-
stage, centrifugal, high-pressure (HP) compressor. The turbine
consists of a single-stage HP and three-stage LP segstions. The
engine is shown in Figure 1.

The Model TFE731-2, S/N 7353, engine was used exclusively
for the Phase III and the ERBS Fuel Addendum testing. The devel-
opment engine was slightly mcdified to accept the new combustion
system hardware, with the major change being the replacement of
the fuel pump with an AiResearch Model ATF3~6 engine pump. This
pump was required to provide an additional fuel pressure source
for actuation components of the variable-geometry combustion
system.

N TR




LU

Figure 1.
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Left-Front View of AiResearch
Model TFE731 Turbofan Engine.



Concept 2 Variable-Geometry Combustor

The combustion system vtilized for this test was referred to
as Concept 2 and employed variable geometry as a means for
controlling the reaction-zone equivalence ratio and, hence, the
emissions levels. The Concept 2 system was developed ovei the
course nf the three phases of the NASA/AiResearch PRTP and used
butterfly valves mounted on the 20 combustor dome swirlers to
control the airflow through this hardware. A typical valve-
swirler assembly is shown in Figure 2. The valves were connected
through linkages to a unison ring that was operated by a
hydraulic actuator. The actuator was operated by fuel pressure
and was controlled by an electronic contral that allowed the
valves to be set at any position between full closed and full
open. Figure 3 shows a combustor assembly with the 20 valve-
swirlers attached. Figure 4 is a photograph of the¢ combustion
system subassembly showing the unison ring and actuator. ¥

]

3
£

ool sl Sglhen g

A

The fuel injectors for the test were piloted airblast
nozzles with 0.7 flow number* pressure-atomizing nozzles being
used as pilots. A conventional engine flow-~-divider valve was
modified to phase in fuel flow to the airblast nozzles at power
settings above taxi-idle. Figure 5 shows the piloted airblast
injector used in this test.

The combustor operation parameters at the sea-level,
standard-day, static conditions at takeoff are presented in
Figure 6.

*Flow number = fuel flow rate e

(differential fuel preséure)
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Figure 2.

Valve Housing Assembly.
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Combustor Valve Actuation System.
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Figure 5.

Fuel Nozzle }"‘art 3551831
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Test Facilities

The Model TFE731-2 engine was tested in the AiResearch
(Phoenix) engine test facility. This facility, shown in Fig-
ure 7, is utilized for development, qualification, and production
testing of Garrett prime propulsion turbofan ergines.

Engine/Combustor Instrumentation

The instrumentation required to e¢valuate engine and com-
bustor performance was incorporated during Phase III of the PRTP.
This instrumentation was also used during the ERBS Fuel Addendum.
A listing of the instrumentation is presented in Table III. 1In
addition to this instrumentation, en emission-sampling probe was
used to measure the gaseous and particulate emissions. The loca-
tion of the probe installation is shown in Figure 8. The probe
had 24 sampling points and could be operated on one of twe
12-point circuits or one 24-point sampling mode. A photograph of
the probe is shown in Figure 9,

In the Phase III engine testing, wall temperatures were
determined by the application of temperature-sensitive paint to
the liner walls. For the ERBS Fuel Addendum, to more precisely
determine combustor-wall temperatures, 16 thermocouples were
attached to the 1liner wall in areas that had previously been
determined as hot zones and in intermediate positions. Fig-
ure 10 shows a typical installation of a portion of the thermo-
couples.

The AiResearch exhaust-gas emissions sampling and analysis
equipment that was used in the program consisted of two basic
types: that used for sampling gaseous emissions of Nox, HC, CO,
and CO,; and that used to obtain the smoke number of insoluble
particulates in the exhaust gas. The analyzers, together with

15
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DUAL TEST FACILITY FOR
TURBOFAN/TURBOJET ENGINES
TYPICAL TEST CELL

ENGINE TEST CONSOLI DATA-ACQUISITION SYSTEM

Figure 7. Propulsion Engine Test Facility.



TABLE IX, ENGINE INSTRUNENTATION,
L}
! Total Req'd
symbol Recording
and Engine Accuracy
Parameter station Unit  Range (Pull Scale) Sansor Type
Low rotor speed Ny tpm 4K-25K 40,258 1 monopole
nigh rotor speed N, rpm  18K-30K 20,%6 1 monopole
Burner plenum pressure Pep KPa 200-179)3 $0,5) 1 ‘static tap
HPT discharge tempsrature Tes.0 R 422-1200 13K 4 one~element probes
LPT discharge pressure Poy.0 kPa  10)-207 10,58 5 five-element probes
Bellmouth total prespure "';'1.2 kPa 90~-103 10,54 6 one-chmen'; probes
Bellmouth static prassure Pgy.2 kbPa 90-103 20,58 6 static taps
Inlet acreen tempevature T,y g, K 266-322 12K 5 sets of 2 thermo-
couples

LPT discharge temperature Ter.0 K 394-922 E11 4 8 two=clement probes
LPT discharge pressure Pey.0 kPa  103-207 20,54 5 five-element probes
l:::?;:ypgg::t:edhchnqe Pgs.0 kPa 90~103 20,56 4 static taps
Fuel flow L kg/sec oo..oaz_’c; 20,58 g gg:grﬁ::.:\enru,
Fuel pressure, primary P\m’ kPa 0-689% 20,59 1 transducer
ruel pressure, secondary Purs kPa 0~60695 20,58 1 transducer
Specific gravity, fuel rsG - 0,7-0,9 20.5% ’
ruel tempecature TruEL K 203-311 2K 1 thermocouple
Measured thrust r"';; kN 0-22,2 0,58 2 load cells
Barometric pressure Pa“ kPa 90-103 $0.58 i
Power lever angle PLA deg 0-120 31°¢
HPC discharge temperature Tt3.0 X 355-755 23K 6 one-element probes
HPC discharge pressure Py3.0 kPa 200-1793 £0.5¢ 6 one-eiement prohes
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Figure 9. Emission Sampling Probe.
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Figure 10.

Typical Wall Thermocouple Installation



all required calibration gases and other support equipment, were
installed in the mobile units shown in Figures 11 and 12. All
equipment, including plumicing and materials, conforms to EPA
recommendations on exhaust emission analysis, as specified in
Section 87.82 of Reference 1. A schematic of the gas analyzer
£low system is shown in Figure 13, and the exhaust smoke measure-
ment system schematic is shown in Figure 14.

The gaseous emission analysis equipment consisted of the
following analyzerz, along with the refrigeration, gasifier,
filtration, and pumping devices required for obtaining and pro-
cessing the samples:

o A Thermo Electron chemiluminescent analyzer for deter-
mining the presence of oxides of nitrogen (Nox) over a
range of 0 to 10,000 ppm

o A Beckman Model 402 hot flame-ionization-detection
hydrocarbon analyzer capable of discriminating
unburned hydrocarbons (HC) in the sample over a range
of 5 ppm to 10 percent

o] A Beckman Model 315B carbon-monoxide (CO) analyzer.
This analyzer has three discrete sensitivity ranges
corresponding to 0 to 100, 0 to 500 and 0 to 2500 ppm

o A Beckman Model 315B carbon~dioxide (coz) analyzer,
The sensitivity ranges of this analyzer correspond to 0
to 2, 0 to 5, and 0 to 15 percent, (The measurement of
CO2 is not specifically required for the determination
of pollutant emission rates. Howiver, AiResearch
conducts analyses of Coqy in engine exhaust gases to
provide a carbon balance with the fuel consumed as a
meai¢ of checking the validity of test data.)
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GAS MEASURED INSTRUMENT
CHEMILUMINESCENT
OXIDES OF NITROGEN ANALYZER
FLAME IONIZATION
HYDROCARBONS DETECTOR
CARBON MONOXIDE NON-DISPERSIVE
CARBON DIOXIDE INFRARED ANALYZER

Figure 1ll. Gaseous Exhaust Emissions Measurement
Instrumentaticon.
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Figure 12.

Mobile Smoke Analyzer.
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Figure 13.
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COMBUSTOR
DISCHARGE o

EMISSIONS
SAMPLING
MECHANISM

B
NEEDLE YPASS

DIVERTER $Z, LINE
VALVE £
NEEDLE SHUTOFF
DISCHARGE VALVE VALVE
VOLUME ‘
MEASUREMENT
ROTOMETER
BN
VACUUM
PUMP
Figure 14. Particulate Analyzer Flow System.
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All instruments, zero gases, and span gases were kept at a
constant temperature to avoid drift. The equipmen% is capable of
continuously monitoring NO,, HC, CO, and CO, in exhaust gases,
The zero and span gases used to calibrate the instruments are
given in Table 1V,

For exhaust smoke emissions, sample sizé¢ measurements were
made with a Precision Scientific Wet Test Meter accurate to
within 20.005 standard cubic meter. Wet test pressure and tem-
perature were measured within %68 Pa and 0.50 K, respectively.
Sample flow measurements were conducted with a Brooks Rotormeter
Model 110, accurate to within $1.7 cm3/min. A Duo-Seal
Model 1405 vacuum pump, with a free-flow capacity of 0.57 cm3/min
and no-flow vacuum capability of 1 micron, was used. Reflectance
measurements were conducted with a Welch Densichron Mcdel 3837
photometer,

Data Acquisition and Reduction Procedure

All engine performance and emission data were recorded by a
high-speed digital acquisition system (DAS), This system pro-
cessed the data in real time and provided CRT displays of key
engine and emission parameters for the purpose of setting accu-
rate power points., 1In addition, the DAS provided "hard" copies
of the CRT displays and stored test data on magnetic tape fcr
more detailed data reduction that was performed at the conciusion
of each test. This final data reduction program took the mag-
netic tape data and calculated engine-performance parameters and
emission indexes for each specific power setting, and provided a
printout, as typified in Figure 15. The emission indexes calcu-
lated from this program were manually selected and input into an
EPAP calculation program, This program corrected NO, emission-
index values for variations in humidity and combustor inlet pres-
sure and temperature by the expression:

26
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TABLE 1IV. 2ZERO AND SPAP GASES

Gas Concentration Manufacturer
Zero Air and N, HC <1.0 ppm Air Products
CBHB in Air 6.3 ppm Air Products
52.0 ppm
105.0 ppm
NO in N2 16.9 ppm Scott Research
46.5 ppm Labs
109.0 ppm
CC in N, 65.0 ppm Air Products
250.0 ppm Matheson
440.0 ppm Air Products
co, in N, 1.05% Scott Research
9.97% Labs
3.05%
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EIcopr™ EI P 0.5
coRR™ “TMERS (T3 yoppy,

P

(T - )/288
€ ""T3 MODEL '3 MEAS

T3 MEAS
x e 19(Hupas = Hgmp)

HC and CO emission indexes were corrected for variations in
combustor inlet pressure by the expression:

EI,opr™ EI P
"CORR™ “'MEAS [Fm) oo

Po.
3 MODEL

where:
EI = Emission lndex, g/kg fuel
CORR = Corrected values used in EPAP calculation

MEAS = Measured values as recorded during the test

MODEL = Model valuzs as predicted for a nominal engine at
standard-day, sea-level, static conditions

P = Combustor inlet pressure, kPa

3
u

Combustour inlet temperature, K
H = Inlet specific humidity, g H20/g air
Hepp = 0.00634 g HEO/g air

The corrected emission indexes were then used to calculate
the EPAPs. A sample printout is shown in Figure 16.
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CHAPTER III

TEST RESULTS AND DISCUSSION

The engine test using ERBS fuel was run on May 19 and 20,
1980. The test was run in conjunction with a test using Jet A
aviation turbine fuel to obtain a direct comparison of the engine
performance and emission values of the two fuels. On May 19,
low-power points were run. The variable-geometry actuator was
not attached to ensure that the valves remained closed and
sealed, since sealing was determined to be critical in earlier
testing. Also, the secondary-fuel circuit was sealed to prevent
the possibility of any fuel leakage through that circuit. Two
taxi~idle points and an approach point were run on ERBS fuel, and
then the engine was shut down and the fuel switched to Jet A. The
same three points were then repeated.

Following the low=-power points, the engine was shut down and
the variable-geometry actuator connected. The secondary-fuel
circuit was also connected at this time. Smoke data were then
taken on Jet A fuel at six power settings. This procedure was
repeated with the ERBS fuel. After the smoke test, thrust condi-
tions above taxi-idle were run on ERBS fuel; however, high
ambient temperature resulted in unacceptable test data, and
further testing was postponed until the following day.

On May 20, four power settings were evaluated on ERBS fuel
(taxi-idle, approach, climbout, and takeoff). The engine was
then run on Jet A at similar points for comparative purposes.
The complete results of the test are included in Appendix A.

The emission indexes for the test are plotted in Figures 17
through 19 as a function of fuel/air ratio. The data shows good
repeatability between the May 19 and May 20 runs. Emissions of
CO are slightly higher at low power but, for the most part, there
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is little significant difference in the emissions indexes pro-
duced by the two fuels with two exceptions: (1) the engine CO
levels using ERBS fuel are higher at c¢limbout than with Jet A;
and (2) the NO,, levels at the climbout and takeoff power points
are higher with Jet A, These emission values lead to the fol-

lowing EPAPs:

LTO EPAPs
HC co No,
Jet A 0.2 9.2 5.1
ERBS 0.2 10.0 4.8
Goals 1.6 9.4 3.7

There was a significant difference in smbke performance, as
shown in Figure 20. On ERBS fuel, the smoke number was approx-
imately 30 over the entire range from tayi-idle to takeoff, with
an overall smoke nuruer of 31, On Jet A, the smoke number
started below 10 at taxi-idle and increased with increasing
thrust to a maximum of 22.5 at takeoff. Howsver, both values are
below the PRTP goal of 40.

In terms of engine performance, there was no significant
difference. At a corrected N, speed of 19,000 rpm, the engine
produced a corrected thrust level of 12,1 kN on Jet A versus
12.0 kN on ERBS; a reduction of 0.7 percent.

The wall temperature of the combusticn liner was increased
as a result of using ERBS fuel, Figure 2] shows a direct com-
parison of the liner wall thermocouple readings taken at compara-
ble power settings on both fuels. On ERBS fuel, the primary-zone
liner temperatures wern» increased an average of 25K. A peak
temperature difference of 40K was noted (1140K for ERBS versus
1100K for Jet A).
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CHAPTER 1V

CONCLUDING REMARKS

A Model TFE731-2 engine equipped with a variable-gzometry
combustion system designed to produce low emission levels was
tested on ERBS and Commercial Jet A fuels. The purpose of the
test was to determine the effect of a broadened-properties fuel
on the performance and emission levels of the engine. The engine
was tegted at sea-level, standard-day, static conditions from
taxi-idle to full power. The test results indicate little change
in either the gaseous emissions levels or the engine performance
when ERBS fuel was used, with the notable excepticn that the NO,
emissions were slightly less at the high-power points, and the
smoke level with ERBS was higher at all thrust settings.

At the takeoff power setting, the NOx emission indexes were
approximately l2-percent less on ERBS fuel than with Jet A. At
climbout, the ERBS fuel demonstratéd NOx emission indexes on the
order of 18-percent less than those measured with Jet A. These
decreases in NOx were accompanied by the usual increase in CO
with NO,, reduction; however, the reduction was unexpected and no
exper imental explanation could be found.

A smoke number of approximately 30 was measured at all power
settings when operating on ERBS fuel. This was approximately
50~percent higher than the maximum smoke number measured on
Jet A. However, both levels were below the EPA limit of 40, and
" visible smoke was not observed during the test,

Increased wall temperatures in the primary 2zone with ERBS
fuel indicate potential liner-durability problems. The measured
maximum liner temperature gradient was 338 K/cm with Jet A fuel
and 344 K/cm with ERBS fuel. Using low-cycle fatigue empirical
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correlations for metal temperature gradients versus liner life,
the decrease in combustor life was estimated to be 31 percent.

Although the test results are encouraging, an extensive
amount of additional testing would be required before broadened-
properties fuels such as ERBS fuel could be considered acceptable
for commercial usage. Potential problem areas for the combustion
system that need evaluation are as follows:

(o]

40
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Ignition, stability, and relight characteristics
especially with cold fuel

Liner durability/cooling
Fuel-injector atomization performance over extended
periods of operation as affected by fuel thermal sta-

bility

Effect of increased particulate emissions on hot-end
durability.



APPENDIX A

NASA '1‘1 ERBS FUEL ADDENDUM
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