3,955 research outputs found

    Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS) gene expression patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-ÎČ-glucan) walls and septae (callose plugs) of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS). Of 12 <it>CalS </it>gene family members in <it>Arabidopsis</it>, only one (<it>CalS5</it>) has been directly linked to pollen tube callose. <it>CalS5 </it>orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of <it>CalS5 </it>or what its ancestral function may have been.</p> <p>Results</p> <p>We investigated expression of <it>CalS </it>in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms) and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a <it>CalS5 </it>orthologue from <it>Cabomba caroliniana </it>(<it>CcCalS5</it>) (Nymphaeales). Semi-quantitative RT-PCR demonstrated low <it>CcCalS5 </it>expression within several vegetative tissues, but strong expression in mature pollen. <it>CalS </it>transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to <it>CalS5</it>. We also report <it>in silico </it>evidence of a putative <it>CalS5 </it>orthologue from <it>Amborella</it>. Among gymnosperms, <it>CalS5 </it>transcripts were recovered from germinating pollen of <it>Gnetum </it>and <it>Ginkgo</it>, but a novel <it>CalS </it>paralog was instead amplified from germinating pollen of <it>Pinus taeda</it>.</p> <p>Conclusion</p> <p>The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that <it>CalS5 </it>had transient expression and pollen-specific functions in early seed plants and was then recruited to novel expression patterns and functions within pollen tube walls in an ancestor of extant angiosperms.</p

    Developmental evolution of flowering plant pollen tube cell walls: callose synthase (\u3cem\u3eCalS\u3c/em\u3e) gene expression patterns

    Get PDF
    Background A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-ÎČ-glucan) walls and septae (callose plugs) of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS). Of 12 CalS gene family members in Arabidopsis, only one (CalS5) has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. Results We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms) and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5) (Nymphaeales). Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. Conclusion The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression and pollen-specific functions in early seed plants and was then recruited to novel expression patterns and functions within pollen tube walls in an ancestor of extant angiosperms

    An orange fluorescent protein tagging system for real-time pollen tracking

    Get PDF
    BACKGROUND: Monitoring gene flow could be important for future transgenic crops, such as those producing plant-made-pharmaceuticals (PMPs) in open field production. A Nicotiana hybrid (Nicotiana. tabacum x Nicotiana glauca) shows limited male fertility and could be used as a bioconfined PMP platform. Effective assessment of gene flow from these plants is augmented with methods that utilize fluorescent proteins for transgenic pollen identification. RESULTS: We report the generation of a pollen tagging system utilizing an orange fluorescent protein to monitor pollen flow and as a visual assessment of transgene zygosity of the parent plant. This system was created to generate a tagged Nicotiana hybrid that could be used for the incidence of gene flow. Nicotiana tabacum \u27TN 90\u27 and Nicotiana glauca were successfully transformed via Agrobacterium tumefaciens to express the orange fluorescent protein gene, tdTomato-ER, in pollen and a green fluorescent protein gene, mgfp5-er, was expressed in vegetative structures of the plant. Hybrids were created that utilized the fluorescent proteins as a research tool for monitoring pollen movement and gene flow. Manual greenhouse crosses were used to assess hybrid sexual compatibility with N. tabacum, resulting in seed formation from hybrid pollination in 2% of crosses, which yielded non-viable seed. Pollen transfer to the hybrid formed seed in 19% of crosses and 10 out of 12 viable progeny showed GFP expression. CONCLUSION: The orange fluorescent protein is visible when expressed in the pollen of N. glauca, N. tabacum, and the Nicotiana hybrid, although hybrid pollen did not appear as bright as the parent lines. The hybrid plants, which show limited ability to outcross, could provide bioconfinement with the benefit of detectable pollen using this system. Fluorescent protein-tagging could be a valuable tool for breeding and in vivo ecological monitoring

    Elastic deformation of a fluid membrane upon colloid binding

    Full text link
    When a colloidal particle adheres to a fluid membrane, it induces elastic deformations in the membrane which oppose its own binding. The structural and energetic aspects of this balance are theoretically studied within the framework of a Helfrich Hamiltonian. Based on the full nonlinear shape equations for the membrane profile, a line of continuous binding transitions and a second line of discontinuous envelopment transitions are found, which meet at an unusual triple point. The regime of low tension is studied analytically using a small gradient expansion, while in the limit of large tension scaling arguments are derived which quantify the asymptotic behavior of phase boundary, degree of wrapping, and energy barrier. The maturation of animal viruses by budding is discussed as a biological example of such colloid-membrane interaction events.Comment: 14 pages, 9 figures, REVTeX style, follow-up on cond-mat/021242

    Mechanisms and in vivo functions of contact inhibition of locomotion

    Get PDF
    Contact inhibition of locomotion (CIL) is a process whereby a cell ceases motility or changes its trajectory upon collision with another cell. CIL was initially characterized more than half a century ago and became a widely studied model system to understand how cells migrate and dynamically interact. Although CIL fell from interest for several decades, the scientific community has recently rediscovered this process. We are now beginning to understand the precise steps of this complex behaviour and to elucidate its regulatory components, including receptors, polarity proteins and cytoskeletal elements. Furthermore, this process is no longer just in vitro phenomenology; we now know from several different in vivo models that CIL is essential for embryogenesis and in governing behaviours such as cell dispersion, boundary formation and collective cell migration. In addition, changes in CIL responses have been associated with other physiological processes, such as cancer cell dissemination during metastasis

    Political hashtag publics and counter-visuality: a case study of #fertilityday in Italy

    Get PDF
    In 2016 the Italian health ministry launched the ‘Fertility Day’ campaign, aimed at tackling Italy’s low birth rate. Under the accusation of delivering sexist and racist messages, the campaign became a trending topic on Twitter, and a protest was launched to be held during Fertility Day. By applying a combination of digital methods and visual content analysis to the #fertilityday Twitter stream, this paper contributes to existing research on the deliberative strength of political hashtag publics, with a particular focus on their power structures, communication patterns and visual content use. Findings on gatekeeping dynamics downsize optimistic views on the democratising potential of Twitter’s socio-technical infrastructure as they point to the emergence of online satirical media and ‘tweetstars’ – along with mainstream news media– as main producers of spreadable content, with ordinary users only surfacing when traditional media elites and new satirical actors lack or lose interest in the debate. Results confirm that political hashtag publics follow acute event communication patterns, with users highly engaged in retweeting and referencing external material and visual content playing a key role in these gatewatching practices. The transient counter-visuality – or critical stance – of tweets with user-manipulated images, however, also suggests that the deliberative potential of these publics is not easily sustainable over time

    Determinants of impact : towards a better understanding of encounters with the arts

    Get PDF
    The article argues that current methods for assessing the impact of the arts are largely based on a fragmented and incomplete understanding of the cognitive, psychological and socio-cultural dynamics that govern the aesthetic experience. It postulates that a better grasp of the interaction between the individual and the work of art is the necessary foundation for a genuine understanding of how the arts can affect people. Through a critique of philosophical and empirical attempts to capture the main features of the aesthetic encounter, the article draws attention to the gaps in our current understanding of the responses to art. It proposes a classification and exploration of the factors—social, cultural and psychological—that contribute to shaping the aesthetic experience, thus determining the possibility of impact. The ‘determinants of impact’ identified are distinguished into three groups: those that are inherent to the individual who interacts with the artwork; those that are inherent to the artwork; and ‘environmental factors’, which are extrinsic to both the individual and the artwork. The article concludes that any meaningful attempt to assess the impact of the arts would need to take these ‘determinants of impact’ into account, in order to capture the multidimensional and subjective nature of the aesthetic experience
    • 

    corecore