489 research outputs found

    Deep electrical resistivity structure of northwestern Costa Rica

    Get PDF
    First long-period magnetotelluric investigations were conducted in early 2008 in northwestern Costa Rica, along a profile that extends from the coast of the Pacific Ocean, traverses the volcanic arc and ends currently at the Nicaraguan border. The aim of this study is to gain insight into the electrical resistivity structure and thus fluid distribution at the continental margin where the Cocos plate subducts beneath the Caribbean plate. Preliminary two-dimensional models map the only moderately resistive mafic/ultramafic complexes of the Nicoya Peninsula (resistivity of a few hundred Ωm), the conductive forearc and the backarc basins (several Ωm). Beneath the backarc basin the data image a poor conductor in the basement with a clear termination in the south, which may tentatively be interpreted as the Santa Elena Suture. The volcanic arc shows no pronounced anomaly at depth, but a moderate conductor underlies the backarc with a possible connection to the upper mantle. A conductor at deep-crustal levels in the forearc may reflect fluid release from the downgoing slab

    The Role of the D13 (1520) Resonance in eta Electroproduction

    Full text link
    We investigate the electroproduction of eta mesons below a center of momentum energy of 1.6 GeV, with particular emphasis on the roles of the N*(1535) and N*(1520) resonances. Using the effective Lagrangian approach, we show that the transverse helicity amplitude of the N*(1535) can be extracted with good accuracy from the new eta electroproduction data, under reasonable assumptions for the strength of the longitudinal helicity amplitude. In addition, although the differential cross section is found to to have a small sensitivity to the N*(1520) resonance, it is shown that a recently completed double polarization experiment is very sensitive to this resonance.Comment: 7 pages, Revtex, 3 figure

    On astrophysical solution to ultra high energy cosmic rays

    Full text link
    We argue that an astrophysical solution to UHECR problem is viable. The pectral features of extragalactic protons interacting with CMB are calculated in model-independent way. Using the power-law generation spectrum Eγg\propto E^{-\gamma_g} as the only assumption, we analyze four features of the proton spectrum: the GZK cutoff, dip, bump and the second dip. We found the dip, induced by electron-positron production on CMB, as the most robust feature, existing in energy range 1×10184×10191\times 10^{18} - 4\times 10^{19} eV. Its shape is stable relative to various phenomena included in calculations. The dip is well confirmed by observations of AGASA, HiRes, Fly's Eye and Yakutsk detectors. The best fit is reached at γg=2.7\gamma_g =2.7, with the allowed range 2.55 - 2.75. The dip is used for energy calibration of the detectors. After the energy calibration the fluxes and spectra of all three detectors agree perfectly, with discrepancy between AGASA and HiRes at E>1×1020E> 1\times 10^{20} eV being not statistically significant. The agreement of the dip with observations should be considered as confirmation of UHE proton interaction with CMB. The dip has two flattenings. The high energy flattening at E1×1019E \approx 1\times 10^{19} eV automatically explains ankle. The low-energy flattening at E1×1018E \approx 1\times 10^{18} eV provides the transition to galactic cosmic rays. This transition is studied quantitatively. The UHECR sources, AGN and GRBs, are studied in a model-dependent way, and acceleration is discussed. Based on the agreement of the dip with existing data, we make the robust prediction for the spectrum at 1×10181×10201\times 10^{18} - 1\times 10^{20} eV to be measured in the nearest future by Auger detector.Comment: Revised version as published in Phys.Rev. D47 (2006) 043005 with a small additio

    Photo- and Electron-Production of Mesons on Nucleons and Nuclei

    Full text link
    In these lectures I will show some results obtained with the chiral unitary approach applied to the photo and electroproduction of mesons. The results for photoproduction of ηπ0p\eta \pi^0 p and K0π0Σ+K^0 \pi^0 \Sigma^+, together with related reactions will be shown, having with common denominator the excitation of the Δ(1700)\Delta(1700) resonance which is one of those dynamically generated in the chiral unitary approach. Then I will show results obtained for the e+eϕf0(980)e^+ e^- \to \phi f_0(980) reaction which reproduce the bulk of the data except for a pronounced peak, giving support to a new mesonic resonance, X(2175). Results will also be shown for the electromagnetic form factors of the N(1535)N^*(1535) resonance, also dynamically generated in this approach. Finally, I will show some results on the photoproduction of the ω\omega in nuclei, showing that present experimental results claiming a shift of the ω\omega mass in the medium are tied to a particular choice of background and are not conclusive. One the other hand, the same experimental results show unambiguously a huge increase of the ω\omega width in the nuclear medium.Comment: Lecture at the "International School of Nuclear Physics", 29th Course Quarks in Hadrons and Nuclei, Erice, Italy, September 2007. Note added in Proofs concerning the mixed events technique and other comments on omega productio

    Imaging thrombosis with 99mTc-labeled RAM.1-antibody in vivo.

    Get PDF
    Platelets play a major role in thrombo-embolic diseases, notably by forming a thrombus that can ultimately occlude a vessel. This may provoke ischemic pathologies such as myocardial infarction, stroke or peripheral artery diseases, which represent the major causes of death worldwide. The aim of this study was to evaluate the specificity of radiolabeled Rat-Anti-Mouse antibody (RAM.1).We describe a method to detect platelets by using a RAM.1 coupled with the chelating agent hydrazinonicotinic acid (HYNIC) conjugated toWe demonstrated a quick and strong affinity of the radiolabeled RAM.1 for the platelet thrombus. Results clearly demonstrated the ability of this radioimmunoconjugate for detecting thrombi from 10 min post injection with an exceptional thrombi uptake. Using FeClThanks to the high sensitivity of SPECT, we provided evidence that [journal articleresearch support, non-u.s. gov't2018 062018 03 17importe

    Parity-Violating Excitation of the \Delta(1232): Hadron Structure and New Physics

    Full text link
    We consider prospects for studying the parity-violating (PV) electroweak excitation of the \Delta(1232) resonance with polarized electron scattering. Given present knowledge of Standard Model parameters, such PV experiments could allow a determination of the N -> \Delta electroweak helicity amplitudes. We discuss the experimental feasibility and theoretical interpretability of such a determination as well as the prospective implications for hadron structure theory. We also analyze the extent to which a PV N -> \Delta measurement could constrain various extensions of the Standard Model.Comment: 43 pages, RevTex, 8 PS figures, uses epsf.sty, rotate.sty, version to appear in Nucl. Phys. A, main points emphasized, some typos correcte

    Hadronic properties of the S_{11}(1535) studied by electroproduction off the deuteron

    Get PDF
    Properties of excited baryonic states are investigated in the context of electroproduction of baryon resonances off the deuteron. In particular, the hadronic radii and the compositeness of baryon resonances are studied for kinematic situations in which their hadronic reinteraction is the dominant contribution. Specifically, we study the reaction d(e,eS11)Nd(e,e'S_{11})N at Q21GeV2Q^2\ge 1 GeV^2 for kinematics in which the produced hadronic state reinteracts predominantly with the spectator nucleon. A comparison of constituent quark model and effective chiral Lagrangian calculations of the S11S_{11} shows substantial sensitivity to the structure of the produced resonance.Comment: 24 pages, 5 figure
    corecore