849 research outputs found

    Rigid ball-polyhedra in Euclidean 3-space

    Full text link
    A ball-polyhedron is the intersection with non-empty interior of finitely many (closed) unit balls in Euclidean 3-space. One can represent the boundary of a ball-polyhedron as the union of vertices, edges, and faces defined in a rather natural way. A ball-polyhedron is called a simple ball-polyhedron if at every vertex exactly three edges meet. Moreover, a ball-polyhedron is called a standard ball-polyhedron if its vertex-edge-face structure is a lattice (with respect to containment). To each edge of a ball-polyhedron one can assign an inner dihedral angle and say that the given ball-polyhedron is locally rigid with respect to its inner dihedral angles if the vertex-edge-face structure of the ball-polyhedron and its inner dihedral angles determine the ball-polyhedron up to congruence locally. The main result of this paper is a Cauchy-type rigidity theorem for ball-polyhedra stating that any simple and standard ball-polyhedron is locally rigid with respect to its inner dihedral angles.Comment: 11 pages, 2 figure

    Illuminating spindle convex bodies and minimizing the volume of spherical sets of constant width

    Full text link
    A subset of the d-dimensional Euclidean space having nonempty interior is called a spindle convex body if it is the intersection of (finitely or infinitely many) congruent d-dimensional closed balls. The spindle convex body is called a "fat" one, if it contains the centers of its generating balls. The core part of this paper is an extension of Schramm's theorem and its proof on illuminating convex bodies of constant width to the family of "fat" spindle convex bodies.Comment: 17 page

    Occupational manpower impacts of shifting national priorities

    Get PDF
    Bibliography: p. 34-35

    Contact numbers for congruent sphere packings in Euclidean 3-space

    Full text link
    Continuing the investigations of Harborth (1974) and the author (2002) we study the following two rather basic problems on sphere packings. Recall that the contact graph of an arbitrary finite packing of unit balls (i.e., of an arbitrary finite family of non-overlapping unit balls) in Euclidean 3-space is the (simple) graph whose vertices correspond to the packing elements and whose two vertices are connected by an edge if the corresponding two packing elements touch each other. One of the most basic questions on contact graphs is to find the maximum number of edges that a contact graph of a packing of n unit balls can have in Euclidean 3-space. Our method for finding lower and upper estimates for the largest contact numbers is a combination of analytic and combinatorial ideas and it is also based on some recent results on sphere packings. Finally, we are interested also in the following more special version of the above problem. Namely, let us imagine that we are given a lattice unit sphere packing with the center points forming the lattice L in Euclidean 3-space (and with certain pairs of unit balls touching each other) and then let us generate packings of n unit balls such that each and every center of the n unit balls is chosen from L. Just as in the general case we are interested in finding good estimates for the largest contact number of the packings of n unit balls obtained in this way.Comment: 18 page

    The hydrogen economy and jobs of the future

    Get PDF
    Growth in the hydrogen and fuel cell industries will lead to vast new employment opportunities, and these will be created in a wide variety of industries, skills, tasks, and earnings. Many of these jobs do not currently exist and do not have occupational titles defined in official classifications. In addition, many of these jobs require different skills and education than current jobs, and training requirements must be assessed so that this rapidly growing part of the economy has a sufficient supply of trained and qualified workers. We discuss the current hydrogen economy and technologies. We then identify by occupational titles the new jobs that will be created in the expanding hydrogen/fuel cell economy, estimate the average US salary for each job, identify the minimum educational attainment required to gain entry into that occupation, and specify the recommended university degree for the advanced educational requirements. We provide recommendations for further research

    Progress report on the development of a large-scale conditional consistent economic and manpower forecasting model

    Get PDF
    Bibliography: p. 27

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    Using unstructured profile information for gender classification of Portuguese and English

    Get PDF
    This paper reports experiments on automatically detecting the gender of Twitter users, based on unstructured information found on their Twitter profile. A set of features previously proposed is evaluated on two datasets of English and Portuguese users, and their performance is assessed using several supervised and unsupervised approaches, including Naive Bayes variants, Logistic Regression, Support Vector Machines, Fuzzy c-Means clustering, and k-means. Results show that features perform well in both languages separately, but even best results were achieved when combining both languages. Supervised approaches reached 97.9 % accuracy, but Fuzzy c-Means also proved suitable for this task achieving 96.4 % accuracy.info:eu-repo/semantics/acceptedVersio

    Pixel and Voxel Representations of Graphs

    Full text link
    We study contact representations for graphs, which we call pixel representations in 2D and voxel representations in 3D. Our representations are based on the unit square grid whose cells we call pixels in 2D and voxels in 3D. Two pixels are adjacent if they share an edge, two voxels if they share a face. We call a connected set of pixels or voxels a blob. Given a graph, we represent its vertices by disjoint blobs such that two blobs contain adjacent pixels or voxels if and only if the corresponding vertices are adjacent. We are interested in the size of a representation, which is the number of pixels or voxels it consists of. We first show that finding minimum-size representations is NP-complete. Then, we bound representation sizes needed for certain graph classes. In 2D, we show that, for kk-outerplanar graphs with nn vertices, Θ(kn)\Theta(kn) pixels are always sufficient and sometimes necessary. In particular, outerplanar graphs can be represented with a linear number of pixels, whereas general planar graphs sometimes need a quadratic number. In 3D, Θ(n2)\Theta(n^2) voxels are always sufficient and sometimes necessary for any nn-vertex graph. We improve this bound to Θ(nτ)\Theta(n\cdot \tau) for graphs of treewidth τ\tau and to O((g+1)2nlog2n)O((g+1)^2n\log^2n) for graphs of genus gg. In particular, planar graphs admit representations with O(nlog2n)O(n\log^2n) voxels

    Energy and manpower effects of alternate uses of the Highway Trust Fund / CAC No. 101

    Get PDF
    Includes bibliographic references (p. 17-19)
    corecore