435 research outputs found

    Neural dynamics of illusory tactile pulling sensations

    Get PDF
    Directional tactile pulling sensations are integral to everyday life, but their neural mechanisms remain unknown. Prior accounts hold that primary somatosensory (SI) activity is sufficient to generate pulling sensations, with alternative proposals suggesting that amodal frontal or parietal regions may be critical. We combined high-density EEG with asymmetric vibration, which creates an illusory pulling sensation, thereby unconfounding pulling sensations from unrelated sensorimotor processes. Oddballs that created opposite direction pulls to common stimuli were compared to the same oddballs after neutral common stimuli (symmetric vibration) and to neutral oddballs. We found evidence against the sensory-frontal N140 and in favor of the midline P200 tracking the emergence of pulling sensations, specifically contralateral parietal lobe activity 264-320ms, centered on the intraparietal sulcus. This suggests that SI is not sufficient to generate pulling sensations, which instead depend on the parietal association cortex, and may reflect the extraction of orientation information and related spatial processing

    Increasing human motor skill acquisition by driving theta-gamma coupling

    Get PDF
    Skill learning is a fundamental adaptive process, but the mechanisms remain poorly understood. Some learning paradigms, particularly in the memory domain, are closely associated with gamma activity that is amplitude-modulated by the phase of underlying theta activity, but whether such nested activity patterns also underpin skill learning is unknown. Here we addressed this question by using transcranial alternating current stimulation (tACS) over sensorimotor cortex to modulate theta-gamma activity during motor skill acquisition, as an exemplar of a non-hippocampal-dependent task. We demonstrated, and then replicated, a significant improvement in skill acquisition with theta-gamma tACS, which outlasted the stimulation by an hour. Our results suggest that theta-gamma activity may be a common mechanism for learning across the brain and provides a putative novel intervention for optimising functional improvements in response to training or therapy

    Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex

    Get PDF
    Magnetic resonance spectroscopy (MRS) allows measurement of neurotransmitter concentrations within a region of interest in the brain. Inter-individual variation in MRS-measured GABA levels have been related to variation in task performance in a number of regions. However, it is not clear how MRS-assessed measures of GABA relate to cortical excitability or GABAergic synaptic activity. We therefore performed two studies investigating the relationship between neurotransmitter levels as assessed by MRS and transcranial magnetic stimulation (TMS) measures of cortical excitability and GABA synaptic activity in the primary motor cortex. We present uncorrected correlations, where the P value should therefore be considered with caution. We demonstrated a correlation between cortical excitability, as assessed by the slope of the TMS input-output curve and MRS-assessed glutamate levels (r = 0.803, P = 0.015) but no clear relationship between MRS-assessed GABA levels and TMS-assessed synaptic GABA(A) activity (2.5 ms inter-stimulus interval (ISI) short-interval intracortical inhibition (SICI); Experiment 1: r = 0.33, P = 0.31; Experiment 2: r = -0.23, P = 0.46) or GABA(B) activity (long-interval intracortical inhibition (LICI); Experiment 1: r = -0.47, P = 0.51; Experiment 2: r = 0.23, P = 0.47). We demonstrated a significant correlation between MRS-assessed GABA levels and an inhibitory TMS protocol (1 ms ISI SICI) with distinct physiological underpinnings from the 2.5 ms ISI SICI (r = -0.79, P = 0.018). Interpretation of this finding is challenging as the mechanisms of 1 ms ISI SICI are not well understood, but we speculate that our results support the possibility that 1 ms ISI SICI reflects a distinct GABAergic inhibitory process, possibly that of extrasynaptic GABA tone

    Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting.

    Get PDF
    Deep brain stimulation (DBS) for Parkinson's disease (PD) is currently limited by costs, partial efficacy and surgical and stimulation-related side effects. This has motivated the development of adaptive DBS (aDBS) whereby stimulation is automatically adjusted according to a neurophysiological biomarker of clinical state, such as β oscillatory activity (12–30 Hz). aDBS has been studied in parkinsonian primates and patients and has been reported to be more energy efficient and effective in alleviating motor symptoms than conventional DBS (cDBS) at matched amplitudes

    Incomplete evidence that increasing current intensity of tDCS boosts outcomes

    Get PDF
    BACKGROUND: Transcranial direct current stimulation (tDCS) is investigated to modulate neuronal function by applying a fixed low-intensity direct current to scalp. OBJECTIVES: We critically discuss evidence for a monotonic response in effect size with increasing current intensity, with a specific focus on a question if increasing applied current enhance the efficacy of tDCS. METHODS: We analyzed tDCS intensity does-response from different perspectives including biophysical modeling, animal modeling, human neurophysiology, neuroimaging and behavioral/clinical measures. Further, we discuss approaches to design dose-response trials. RESULTS: Physical models predict electric field in the brain increases with applied tDCS intensity. Data from animal studies are lacking since a range of relevant low-intensities is rarely tested. Results from imaging studies are ambiguous while human neurophysiology, including using transcranial magnetic stimulation (TMS) as a probe, suggests a complex state-dependent non-monotonic dose response. The diffusivity of brain current flow produced by conventional tDCS montages complicates this analysis, with relatively few studies on focal High Definition (HD)-tDCS. In behavioral and clinical trials, only a limited range of intensities (1-2 mA), and typically just one intensity, are conventionally tested; moreover, outcomes are subject brain-state dependent. Measurements and models of current flow show that for the same applied current, substantial differences in brain current occur across individuals. Trials are thus subject to inter-individual differences that complicate consideration of population-level dose response. CONCLUSION: The presence or absence of simple dose response does not impact how efficacious a given tDCS dose is for a given indication. Understanding dose-response in human applications of tDCS is needed for protocol optimization including individualized dose to reduce outcome variability, which requires intelligent design of dose-response studies

    Identification of the Sex Pheromone of a Protected Species, the Spanish Moon Moth Graellsia isabellae

    Get PDF
    Sex attractant pheromones are highly sensitive and selective tools for detecting and monitoring populations of insects, yet there has been only one reported case of pheromones being used to monitor protected species. Here, we report the identification and synthesis of the sex pheromone of a protected European moth species, Graellsia isabellae (Lepidoptera: Saturniidae), as the single component, (4E,6E,11Z)-hexadecatrienal. In preliminary field trials, lures loaded with this compound attracted male moths from populations of this species at a number of widely separated field sites in France, Switzerland, and Spain, clearly demonstrating the utility of pheromones in sampling potentially endangered insect species

    Flexible head-casts for high spatial precision MEG.

    Get PDF
    BACKGROUND: In combination with magnetoencephalographic (MEG) data, accurate knowledge of the brain's structure and location provide a principled way of reconstructing neural activity with high temporal resolution. However, measuring the brain's location is compromised by head movement during scanning, and by fiducial-based co-registration with magnetic resonance imaging (MRI) data. The uncertainty from these two factors introduces errors into the forward model and limit the spatial resolution of the data. NEW METHOD: We present a method for stabilizing and reliably repositioning the head during scanning, and for co-registering MRI and MEG data with low error. RESULTS: Using this new flexible and comfortable subject-specific head-cast prototype, we find within-session movements of <0.25mm and between-session repositioning errors around 1mm. COMPARISON WITH EXISTING METHOD(S): This method is an improvement over existing methods for stabilizing the head or correcting for location shifts on- or off-line, which still introduce approximately 5mm of uncertainty at best (Adjamian et al., 2004; Stolk et al., 2013; Whalen et al., 2008). Further, the head-cast design presented here is more comfortable, safer, and easier to use than the earlier 3D printed prototype, and give slightly lower co-registration errors (Troebinger et al., 2014b). CONCLUSIONS: We provide an empirical example of how these head-casts impact on source level reproducibility. Employment of the individual flexible head-casts for MEG recordings provide a reliable method of safely stabilizing the head during MEG recordings, and for co-registering MRI anatomical images to MEG functional data
    corecore