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Abstract  18 

Background: Transcranial direct current stimulation (tDCS) is investigated to modulate neuronal function 19 

by applying a fixed low-intensity direct current to scalp. 20 

Objectives: We critically discuss evidence for a monotonic response in effect size with increasing current 21 

intensity, with a specific focus on a question if increasing applied current enhance the efficacy of tDCS.  22 

Methods: We analyzed tDCS intensity does-response from different perspectives including biophysical 23 

modeling, animal modeling, human neurophysiology, neuroimaging and behavioral/clinical measures. 24 

Further, we discuss approaches to design dose-response trials.   25 

Results: Physical models predict electric field in the brain increases with applied tDCS intensity. Data from 26 

animal studies are lacking since a range of relevant low-intensities is rarely tested. Results from imaging 27 

studies are ambiguous while human neurophysiology, including using transcranial magnetic stimulation 28 

(TMS) as a probe, suggests a complex state-dependent non-monotonic dose response. The diffusivity of 29 

brain current flow produced by conventional tDCS montages complicates this analysis, with relatively few 30 

studies on focal High Definition (HD)-tDCS. In behavioral and clinical trials, only a limited range of 31 

intensities (1-2 mA), and typically just one intensity, are conventionally tested; moreover, outcomes are 32 

subject brain-state dependent. Measurements and models of current flow show that for the same applied 33 

current, substantial differences in brain current occur across individuals. Trials are thus subject to inter-34 

individual differences that complicate consideration of population-level dose response. 35 

Conclusion: The presence or absence of simple dose response does not impact how efficacious a given 36 

tDCS dose is for a given indication. Understanding dose-response in human applications of tDCS is needed 37 

for protocol optimization including individualized dose to reduce outcome variability, which requires 38 

intelligent design of dose-response studies.  39 

Key Words: Transcranial direct current stimulation (tDCS), Dose-response, Neuromodulation, Dose-40 

control 41 
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Highlights: 42 

 Animal models show neuromodulation by single low-intensity electric fields, but no 43 

comprehensive evidence for a linear dose-response relationship across tDCS relevant electric field 44 

intensities.  45 

 Clinical neurophysiology and imaging shows neuromodulation by tDCS but complex, state-46 

dependent none-monotonic changes with tDCS intensity. These experimental measures, along with 47 

clinical and behavioral studies suggest significant inter-individual difference. 48 

 We describe how assuming a causal chain across different scales (from single cells to local and 49 

large networks to behavior) the lack of a linear response at any single scale may preclude an 50 

aggregate linear dose response at the behavioral level. 51 

 Despite ongoing advances in the science of tDCS, we currently do not have a clear understanding 52 

of dose-response relationships in tDCS. Even as this knowledge develops, methods to normalize 53 

tDCS dose across individuals are warranted. 54 

 55 

Introduction 56 

tDCS involves low-intensity direct currents (few mA) applied to the scalp via pad electrodes 57 

(typically 25–35 𝑐𝑚2) [1] or smaller electrodes in arrays (HD tDCS; [2]). Encouraged by the general safety 58 

profile [3-5], low intensity tDCS has been  broadly tested as a tool for cognitive research in healthy subjects 59 

[6] as well as to treat a broad range of neurological and psychiatric disorders and symptoms [7, 8]. It is 60 

generally accepted that the physics of tDCS dictates that current flow intensity in the brain (electric field) 61 

will increase linearly with applied current (Figure 1) [9]. Rather, our primary question is whether 62 

neurophysiological and behavioral responses also increase linearly, or at least monotonically, with applied 63 

current intensity. Specifically, does increasing the current of tDCS (e.g. from 1 to 2 mA) increase effects 64 

size for a given experiment and outcome measure? This question is relevant because any choice of 65 
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stimulation protocol and comparison among studies with different protocols rests on the ability to relate the 66 

effects of one intensity to another in a rational way. 67 

However, the question is complicated because the complete dose of tDCS is defined by the applied 68 

current, the duration, and the electrode montage [10] which produce a complex pattern of current flow in 69 

the brain; nonetheless, we focus here on the role of applied current intensity while noting how other factors 70 

may influence (interact with) the current-intensity dose response. We discuss how individual anatomical 71 

differences in the amount of current density (electric field) to the brain vary for the same applied current, 72 

which may therefore lead to variations in individual intensity-response [11]. Moreover, we consider the 73 

extent to which tDCS responses vary with brain-state, magnifying individual- and task specific variations 74 

in dose-response.  75 

In the last two decades, tDCS dose-response relationship has been evaluated from different 76 

perspectives ranging from single cells, to small local brain circuits and synapses, to large networks, to 77 

overall brain function and behavior. Assuming a causal chain across different scales (applied current first 78 

changes single cells, which alter local and large networks, which change behavior), the lack of a linear 79 

response at any of these scales may preclude an aggregate linear dose response at the behavioral level 80 

(Figure 1). The organization of this document centers around measurement approaches (e.g. animal models, 81 

imaging) but specific techniques often map specific scales (Figure 1; e.g. animal models measures small 82 

circuits, imaging measures large network). We discuss tDCS intensity dose response through these different 83 

perspectives.   84 

Basic biophysics of intensity-response 85 

Modeling studies relate the applied dose to the scalp [10], including current intensity, to the 86 

resulting electric field (or current density) in the brain [12]. While current (in units of mA) is the controllable 87 

stimulation parameter, electric field (in unit of V/m) reflects the local stimulation intensity each brain region 88 

is actually exposed to. It is generally accepted that the physics of tDCS dictates that current flow intensity 89 
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in the brain (electric field) will increase linearly with applied current [9]. Therefore, the question is not if 90 

there is a linear response between increasing applied current and brain electric field but rather if the brain 91 

response to increasing electric field is itself linear. As noted above, in humans, the electric field varies with 92 

individual anatomy (the implications of which are discussed below), though in any case it tracks linearly 93 

for a given individual and scales across a population. In some animal models, notably in-vitro brain slices 94 

[13], the electric field intensity can be tightly controlled allowing direct testing of electric field dose-95 

response. 96 

Modeling studies predict that for low intensity range of applied current (i.e. 2 mA), induced electric 97 

field in the brain is less than 1 V/m (Figure 1) [14]. These predictions have been directly [15-18] and 98 

indirectly validated [19, 20]. Because of these low electric fields, it has been suggested that the primary 99 

effects of tDCS are due to changes in the membrane potentials of neurons with most attention paid to 100 

pyramidal grey matter neurons orientated orthogonal to the brain surface [13, 21] or to synaptic terminals 101 

[22]. In this view, any effects of tDCS are secondary to changes in this polarization [23, 24]. Even when 102 

other cell types may be implicated (e.g. glia, [25], the primary mechanism of tDCS is speculated to act 103 

through polarization of these cell membranes [26].  104 

Basic theory of tDCS suggests that membrane polarization would be polarity-specific and linear 105 

with applied current intensity (i.e. generated electric field (EF)). This is because tDCS is low intensity (few 106 

mA) and so considered to depend on subthreshold resting membrane potential changes rather than directly 107 

inducing neuronal firing (e.g., 700-1000 mA used in ECT). Thus, assuming membrane polarization is the 108 

key determinant for the effect of tDCS, it is reasonable to assume that increasing tDCS intensity will 109 

increase effects size in general (Figure 1). However, this may strictly only apply in well-controlled 110 

preparations; in the brain, responses may be non-linear and occur in a complex (e.g. non-linear, 111 

homeostatic) manner. Therefore, a critical unanswered question is whether increasing current in the tDCS 112 

range applied in humans (4mA or less) enhances neuromodulation and outcomes in a linear, or at least 113 

monotonic manner. This question of linear dose response for a given polarity can be distinct from whether 114 
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there are any polarity specific effects. Notably, if one considers folding of the cortex and diffuse current 115 

flow, tDCS produces mixed polarity effects under each stimulation electrode [22, 27]. This again 116 

emphasizes that extrapolation from well-controlled animal studies can be fraught with oversimplification. 117 

Indications about intensity-response of tDCS from animal models   118 

Quiescent neurons are those that are not spontaneously firing action potentials (which is an 119 

anomalous state because neurons in vivo are active); such neurons can be observed in brain slices with 120 

normal superfusate. Application of electric fields to such quiescent neurons suggest a linear correlation 121 

between induced membrane polarization and electric field intensity polarity (Figure 1) (i.e. the more 122 

external electric field, the more neuronal polarization). However, this relationship has been thoroughly 123 

tested only for intensities above those applicable to studies in humans (>10 V/m). For example, Bikson et 124 

al. (2004) evaluated the effect of uniform DC electric field on neuronal excitability in a rat hippocampal 125 

slices using electric field between 10 to 100 V/m [13]. These authors reported membrane polarization was 126 

generally linear except when field intensities exceeded 80 V/m (equivalent to tens of mA for tDCS, which 127 

resulted in non-linear firing, [13]. While it is reasonable to assume this linear relationship continues with 128 

electric fields under 1 V/m (Figure 1), this awaits empirical evidence. Other studies have reported a linear 129 

sensitivity of neurons to polarization with DC or low-frequency alternating current (AC), electric fields 130 

ranging from 2 -15 V/m DC [21, 28] to 1-15 V/m AC [28-30]. We are not aware of any neurophysiological 131 

response directly demonstrating linear polarization effects with tDCS relevant fields intensities (<1 V/m). 132 

Theoretical neuron polarization models based on traditional electrical stimulation theory predict a linear 133 

polarization across all sub-threshold intensities in quiescent neurons including tDCS ranges of < 1 V/m 134 

[31].   135 

Membrane polarization is easiest to measure in quiescent neurons. However, neurons in vivo are 136 

active, not quiescent. Any dose response assessment should therefore be conducted in firing (non-quiescent) 137 

neurons. Assessing dose-response relationships is more complex in this case because: 1) the properties of 138 

the neuronal membrane changes with ongoing activity [31, 32]; and 2) any targeted neuron is coupled with 139 
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a larger population or entire network and its activity is presumably mediated by changes in network activity 140 

[28].  141 

Animal studies have demonstrated changes in network activity (0.2 V/m, [28]; 0.5 V/m [30] and 142 

meta-plasticity (0.75 V/m, [33]) for electric fields <1 V/m but have not systematically evaluated a dose-143 

response within this range. We emphasize that showing an effect at one DCS intensity compared to no-144 

stimulation does not establish a (linear) dose response. Another complication is that “classical” animal 145 

studies have applied electrodes on the surface of the brain with electric fields orders of magnitude above 146 

those generated by tDCS in humans [34, 35]. Typically, these studies have used unit firing rate to measure 147 

response; here again caution is warranted in assuming any dose response at high DCS intensity applied to 148 

ranges below 1 V/m and in drawing direct comparison with measures obtained in humans, such as motor-149 

evoked potentials (MEPs).   150 

These considerations aside, animal studies, using both low and high-intensity DCS, have shown 151 

that the effects of DCS are activity (state) dependent, which indicates that the effects of any given DCS 152 

dose may vary depending on the outcome measure (experiment). For example, Bikson and colleagues 153 

(2013) showed that the direction of DCS modulation on synaptic efficacy depends on the afferent pathways; 154 

indeed, in the same columns (small network) one pathway may be enhanced even as another is inhibited 155 

[13, 22]. Frohlich et al. [21] and Reato et. al [28] have shown that the variation of DCS effects can depend 156 

entirely on ongoing brain activity – evidently if tDCS modulates ongoing brain activity then the effect of 157 

tDCS entirely depends on what endogenous activity is present. Fritch et al. [33] and Kornberg et al. [36] 158 

showed pathway and activity state-dependent plasticity modulation by DCS. Although these findings do 159 

not in themselves indicate that the dose-response of any given activity is not monotonic, they show that the 160 

response to a given dose can categorically vary on different outcome measures (e.g. brain states). While, 161 

on the one hand, the ongoing activity in brain slices (“brain state”) is abstracted from the in vivo case, on 162 

the other hand, brain slices provide exquisite control and monitoring of brain state, supporting the testing 163 

of hypothesis on the role of brain state in DCS intensity dose response.  164 
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In summary, in both quiescent and active neurons of animal brains there is (remarkably) no 165 

comprehensive evidence for a linear dose-response relationship at electric field intensities below 1 V/m. 166 

There is, however, evidence of neurophysiological changes at specific low intensities supporting that tDCS 167 

can modulate brain function. Some dose response is expected in animal models (starting with no response 168 

for a no-stimulation condition of 0 V/m) but the absence of clear escalation in response with intensities up 169 

to 1 V/m (e.g. including 0.25 V/m, 0.5 V/m, 0.75 V/m, 1 V/m) is noteworthy and a critical area for future 170 

studies.  171 

We note that evidence for dose response from other neuromodulation approaches using supra-172 

threshold (high intensity) pulse approaches such as deep brain stimulation (DBS) [37, 38], TMS [39] and 173 

transcranial electrical stimulation (TES) [19], do not establish a dose response for tDCS, which is sub-174 

threshold. Within those supra-threshold techniques, more intensity simply results in a high-likelihood 175 

and/or number of recruited neurons. Evidence from low-intensity, sub-threshold, alternate waveforms such 176 

as transcranial alternate current stimulation (tACS) or transcranial random noise stimulation (tRNS) can 177 

also show non-linearity in dose-response as measured by TMS-MEP [40]. However, such data do not 178 

provide direct evidence in support of non-linear tDCS dose-response given the presumed unique mechanism 179 

of action when using a DC waveform. Finally, to foreshadow the following section, animal studies are 180 

anatomically constrained, and generally record from a very small section of cortex. Results from such 181 

preparation may not easily transfer to applications in humans, which lead to a much larger extent of 182 

stimulated cortex and thus are influenced by the complex interactions with the convoluted cortical structure. 183 

Diffuse current flow in tDCS vs. HD-tDCS 184 

Prior to expanding on dose-response data in humans, some comments on the relationship between 185 

applied current and resulting brain current flow patterns are critical. While dose of tDCS is defined by 186 

operator controlled factors including current intensity [10], the electric field generated in the brain will vary 187 

by individual and will fluctuate in space across the brain (Figure 2). Intra-cranial recording [15, 17], 188 

imaging [41], and current flow models [2] show that traditional pad-based tDCS montages deliver current 189 

flow across large brain areas including not just under, but in the brain regions between the electrodes (Figure 190 
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2, A and B). Many conventional tDCS montages can produce significant current flow through 30-70% of 191 

the brain including deep brain structures [42]. Moreover, peak current is often seen between, rather than 192 

under the electrodes [43]. The intensity and pattern of diffuse current flow and where peaks are generated 193 

reflect idiosyncratic anatomical differences and so there is variation across individuals (Figure 2, Head #1 194 

( A.1, B.1, C.1), Head #2 (A.2, B.2, C.2)) that is distinct from standard averaged head simulations (Figure 195 

2,   Head #3 (A.3, B.3, C.3)) [44, 45]. Attempts to develop a dose-response based on applied tDCS current 196 

(typically fixed across subjects) should be interpreted in this context. For example, the conventional “M1-197 

SO” tDCS montage, used to probe the dose-response of M1 (see human neurophysiology below), is 198 

predicted to produce as high electric fields in many regions afferent to M1 [42] (Figure 2,A). Therefore, the 199 

intensity-response may depend on how each area of the network responds to increased current density and 200 

then how the different brain areas interact. As we discuss later, one approach to account for this complexity 201 

is to use multiple tDCS montages along with models of current flow to regress dose-response in human 202 

studies. 203 

Since the spatial distribution of stimulation could impact dose response, a complimentary approach 204 

to conventional tDCS is the use of smaller HD electrodes. HD-tDCS electrode arrangements include 205 

concentric ring configurations (e.g. 4x1 HD-tDCS; [46]) which applied to the (motor) cortex produce more 206 

focal simulation delivery (Figure 2, C). This might reduce variability in targeting across subjects [19] 207 

compared to pad-based tDCS (Figure 2, A and B). HD montages can be designed to spare deep brain regions 208 

or maximize current to deep structures [47]. With the goal of understanding current intensity dose-response 209 

by stimulating a relatively smaller and more controlled area of cortex, concentric-ring HD-tDCS is 210 

especially a useful tool in addition to pad-based tDCS. However, direct comparisons are few [48-50].  211 

Indications about intensity-response of tDCS from human neurophysiology 212 

In exploring dose response in humans, tDCS studies have relied heavily on MEP changes in 213 

response to TMS to establish neurophysiological changes in motor regions by tDCS [4, 51]. In the most 214 

basic experiments, the TMS-MEP threshold or MEP response to a fixed TMS intensity is measured before, 215 
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during and/or after application of tDCS. A linear dose response would predict that increasing intensity (i.e., 216 

> mA) would proportionally increase the degree of modulation (i.e., > TMS-MEP). Indeed, early canonical 217 

studies in healthy subjects used a low-dose range (up to 1 mA for several minutes) and initially suggested 218 

a monotonic relationship between tDCS intensity and TMS-MEP size. 219 

While several subsequent studies replicated the basic findings at 1 mA [52], a more complex dose 220 

response has emerged. Increasing stimulation intensity, increasing duration (in cases by >10 minutes), 221 

and/or concurrent brain activation or pharmacological manipulation [53-58] can also change the extent and 222 

direction of excitability changes measured by TMS-MEP and, so, the dose-response [59]. For example, 223 

priming the motor region during “anodal” tDCS (asking subjects to activate hand muscles) can invert the 224 

direction of TMS-MEP modulation suggesting that the direction is state dependent. Increasing “cathodal” 225 

tDCS intensity to 2 mA can result in TMS-MEP enhancement [53].Children also exhibited non-monotonic 226 

dose-response but over a different intensity range. Indeed, as compared to adults [54]  “cathodal” 227 

stimulation became excitatory at only 1 mA. This difference in dose-response within children compared to 228 

adults was consistent with altered brain electric field for small head sizes [60, 61].   229 

As noted above, most of the extant clinical neurophysiology research has used conventional pad 230 

tDCS, where current may be delivered to diverse brain regions (Figure 2, A and B) [15, 17]. To the extent 231 

that any given measured response is influenced by current from more than one region (e.g. TMS- MEP is 232 

influenced by current not only from the motor area but also from premotor regions and afferent deep brain 233 

structures), then dose response will be related to how increasing current to each of these regions in aggregate 234 

influences TMS response. Therefore, an important question is if using HD-tDCS, where more nuanced 235 

control of current flow is predicted, is useful in dissecting and clarifying dose response [62, 63]. 236 

In summary, neurophysiological findings in humans indicate that tDCS outcomes are not 237 

necessarily linear, nor even monotonic, with increasing tDCS intensity (even in the limited range of 1-2 238 

mA). Moreover, the nature of modulation is profoundly influenced by variations in brain state. TMS-MEP 239 

as a probe of brain function, represents a combination of complex measures itself influenced by several 240 
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physiological factors including the excitability of neuronal circuits at both cortical and spinal level [3] and 241 

do not simply map to behavioral changes. In addition, TMS-MEP is typically measured after tDCS (i.e., 242 

offline) and thus may not always reflect the response to concurrent tDCS (i.e., online) effects, which 243 

presumably accumulate during the stimulation period (as reinforced by data on tDCS duration) [4, 64]. 244 

Moreover, it is unclear whether non-motor cortex responds in a comparable manner following tDCS, which 245 

has profound implications for cognitive neuroscience and neuro-rehabilitative efforts. More generally, the 246 

notion that tDCS adjusts brain excitability and functions like a “sliding scale” (that is simply “measured” 247 

by TMS) is an oversimplification [65, 66]. Rather, tDCS-induced excitability and plasticity changes may 248 

reflect a mixture of complex changes in a number of different sets of excitatory and inhibitory synapses 249 

[28, 67]; a possibility supported by recent TMS-MEP work that provides some evidence in humans against 250 

a simple monotonic dose-response [53, 59]. As recently pointed out by Bestmann and Ward (2017) [11], 251 

there is currently no data on the dose-response of tDCS that accounts for the current effectively delivered 252 

to the brain, recent computational neural network modelling studies aside [68]. This is an obvious caveat 253 

when interpreting the extant literature on non-linear effects of tDCS. 254 

 255 

Indications about dose-response from imaging studies 256 

PET, fMRI, and EEG studies in healthy populations corroborate the results from current flow 257 

models that tDCS has distributed effects [69-72]. For example, Clemens et al. (2014), applied tDCS over 258 

the right angular gyrus (AG) and induced large-scale changes in different resting state networks with 259 

significant changes at the ventral lateral thalamic nucleus despite the region not being nominally targeted. 260 

Hampstead and colleagues (2014) demonstrated polarity dependent BOLD signal change during task 261 

performance [73] and resting-state connectivity [74] in healthy young participants such that these measures 262 

were generally relatively enhanced with anodal stimulation but suppressed with cathodal stimulation. 263 

Arterial Spin Labeling (ASL), considered a direct measure of blood flow, suggests a monotonic correlation 264 

between tDCS dose (i.e., 0.8-2 mA) and regional cerebral blood flow underneath the anode [75]. Using 265 
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changes in fMRI signal as an index of cortical recovery in a patient who received successful visual 266 

rehabilitation, Halko et al. (2011) reported correlations between the modeled electrical field and increased 267 

task-related fMRI activation in areas under the anode as well as in perilesional visual areas [76]. Broadly, 268 

these findings of a distributed effect of tDCS are not surprising when considering the diffuse current flow 269 

with conventional tDCS application (Figure 2, A and B). But currently there is scant evidence for the dose-270 

response relationship of tDCS from neuroimaging. Future efforts should leverage different neuroimaging 271 

measures of distributed activity change to tDCS. However,  we note that in some cases the transfer function 272 

between changes produced neural activity may itself not map linearly (Figure 1) onto the measures obtained 273 

with neuroimaging [77-80], and tDCS may itself produce direct (e.g. changes in hemodynamics; [75, 81, 274 

82] and indirect (artifact; [20]) signal changes in imaging data. 275 

 276 

Indications about dose-response from cognitive/behavioral outcomes in healthy population 277 

A narrow range of intensities were tested in tDCS cognitive and behavioral studies (95% of trials 278 

used 1 or 2 mA) [83, 84] with few exceptions [5]. However, even within this small range, there are limited 279 

data directly correlating effect size in tDCS human trials with current intensity [53]. For instance, the 280 

influence of current intensity (i.e. 1 mA, 2 mA) was investigated on a working memory task among healthy 281 

controls, indicating a non-monotonic current intensity dose-response [85]. In another study, none of the 282 

examined intensities (i.e. 1mA, 2 mA) produced significant effects in a working memory task [86]. Cuypers 283 

and colleagues (2013) indicated a dose-response relationship in a motor learning task with significant 284 

enhancement in motor performance at 1.5 mA but not 1 mA [56]. We note the important statistical caveat 285 

that a significant response at one dose, but not another, does not itself establish a difference between two 286 

doses.   287 

Most behavioral and cognitive studies have used large pad-sponge electrodes. Thus, any given 288 

response is influenced by stimulation of more than one cortical region, and dose-response is reflecting the 289 

amalgamation of current flow across many regions with varied intensity in brain areas (see below; Figure 290 
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3). The use of HD-tDCS would significantly reduce current spread, but given current spread even under 291 

optimized HD-tDCS is greater than one gyri which is the size of a typical ROI. Use of HD-tDCS reduces 292 

but not remove this confound.  293 

 294 

Indications about dose-response from functional outcomes in medically ill populations  295 

While tDCS is widely investigated as potential therapeutic tool to enhance cognitive rehabilitation in 296 

neuropsychiatric disorders [87, 88], only a few studies explored dose-response and with a limited number 297 

and range of dose. Protocol variations limit generalization across studies (e.g. electrode montages, cognitive 298 

tasks, population inclusion criteria and type of disorder) on the role of intensity and there is a general 299 

consensus that other factors such as the number of tDCS sessions broadly enhance efficacy [89-91]. In a 300 

meta-analysis of tDCS trials for major depression, Brunoni et al. (2016) could not determine if current 301 

intensity (mA) was positively associated with tDCS efficacy [92]. However, within a crossover design trial, 302 

tinnitus relief was positively correlated with HD-tDCS current intensity [93]. Murry and colleges (2015) 303 

investigated tDCS current intensity in chronic spinal cord injury patient in a single blind, sham controlled, 304 

crossover study [94]; 2 mA ,but not 1 mA, significantly enhanced TMS-MEP modulation. Boggio and 305 

colleagues explored effect of tDCS stimulation site (i.e. over DLPFC, over motor cortex) and intensity (i.e. 306 

1 mA, 2 mA) in Parkinson’s disease [95]. Results indicated an intensity and montage-specific effect with 307 

only 2 mA anodal stimulation over DLPFC significantly improving accuracy of a working memory task. 308 

Optimization of stimulation parameters (i.e. current intensity [0.1-0.4 mA], duration [5-20 min] with 309 

respective steps of 0.1 mA and 5 min) for treatment of Parkinson’s disease in primates indicated that total 310 

charge (∑current intensity × duration of stimulation) is correlated with treatment outcome instead of current 311 

intensity or stimulation duration [96]. In a case report, increasing current intensity (i.e. 1 mA to 3 mA) 312 

enhanced and accelerated benefits in a schizophrenia patient [97]. In another study, feasibility of tDCS for 313 

enhancing cognitive performance in schizophrenia using higher current intensity (i.e. 2 mA vs 1 mA) was 314 

shown [98]. We emphasize that demonstrating efficacy of increased current intensity compared to non-315 

significant effect in commonly used tDCS current intensity (e.g. 1 mA) do not stablish current intensity 316 
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dose response. Investigation of dose response in patients require systematic escalation of current intensity 317 

(see below; Figure 3), and would further benefits from an expanded current range - provided tolerability is 318 

controlled [99].  319 

 320 

Use of current flow models to inform imaging, neurophysiological and behavioral studies of dose 321 

response 322 

As noted above, intra-cranial measurements [15, 17], imaging [41], and models of current flow 323 

show that conventional tDCS with large electrodes are placed “over” the target areas. In fact, they deliver 324 

current to brain regions between the anode and the cathode (Figure 2, A and B) [2, 55]. This diffusivity and 325 

lack of clear targeting complicates the analysis of response intensity and, at the same time, it reinforces that 326 

computational models are needed to comprehensively investigate dose response. Using current flow 327 

modeling, there have been: 1) Retrospective attempts to correlate electric field intensity in regions of 328 

interest (ROI) with clinical outcomes using different montages (with fixed current), under the hypothesis 329 

that montages that enhance electric fields in ROIs (for a given current) will enhance outcomes; 2) 330 

Retrospective correlations of electric field intensity in ROIs with behavioral outcomes with a fixed montage 331 

and fixed current considering how individual head anatomy differences affect brain current intensity, and 332 

3) Prospective attempts to optimize the tDCS montage to deliver electric fields to ROIs, in some cases 333 

accounting for individual anatomy, under the hypothesis that this would enhance outcomes compared to a 334 

uniform tDCS montage [100].  335 

Using current flow modeling, retrospective efforts comparing montages have provided indirect 336 

evidence that electric field intensity produced by tDCS in a ROI correlates with enhanced clinical (e.g. pain, 337 

[101] or neurophysiological outcomes (e.g. TMS MEP, [102]). Kim et al. (2014) investigated the 338 

relationship between the behavioral outcomes in a verbal working memory task (WM) and variations in 339 

electric field intensity over the dorsolateral prefrontal cortex (DLPFC) based on subject specific anatomy. 340 

Participants who showed significant enhanced WM task performance (good responders) had significantly 341 

higher electric field intensity over the DLPFC than other participants (bad responders), suggesting that 342 
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variability in behavioral outcomes of tDCS might be partly due to individual anatomical differences, 343 

consistent with a monotonic dose response. 344 

In some cases, current flow models have been used to optimize response to tDCS, but in these cases 345 

an implicit assumption has been made about a local (tissue level) monotonic dose response, namely that 346 

designing approaches that deliver more electric field to a given brain region will increase effect size. Several 347 

attempts to individualize tDCS by using current flow models to optimize electric field to a target brain 348 

region have centered around stroke patients where individual lesions produce unique distortion of brain 349 

current flow patterns [103]. With the goal of optimizing the tDCS montage to maximize electric fields in 350 

specific anatomical regions implicated in neurorehabilitation (e.g. identified by fMRI), approaches to 351 

individualize HD-tDCS therapy were developed [28, 47] but, even if these trials were conducted, the 352 

underlying assumption on dose response remains to be validated. Several studies have used current flow 353 

modeling to design an optimized HD-tDCS montage (across subjects) for specific ROIs. In applications 354 

including pain control [104], tinnitus [93], motion perception [105], verbal learning and memory function 355 

[63], such HD approaches have yielded encouraging effect sizes, often larger than those using conventional 356 

tDCS montages. However, these HD-tDCS montages typically reduce the spatial extent of current in the 357 

brain rather than electric field intensity [47] and reinforce the role of the spatial distribution of current flow 358 

in influencing dose response rather than providing support for a dose-response itself.  359 

Methodology to systematically investigate dose-response 360 

The thesis of this paper - that there is deficiency in the current knowledge on tDCS intensity dose 361 

response - in turn indicates a need for expanded and more rigorous current intensity dose response testing 362 

[106]. Approaches to experimental design of dose-response studies are discussed in this section (Figure 3), 363 

two in animal (in-vitro and in-vivo) and four in human trials (fixed current with conventional pad electrodes, 364 

controlled electric field with conventional pad electrodes, fixed current with high-definition electrodes, and 365 

controlled electric field with high definition electrodes). 366 

Animal studies provide special opportunities to explore dose-response relationships, but only if 367 

conducted in meaningful ways to the human stimulation [26]. In-vitro brain slice experiment uses an 368 
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escalation of electric field intensity (Figure 3 A.1), which is more meaningful to control than applied 369 

current. Using specific stimulation techniques (i.e. large parallel wires;[13]), with a uniform electric field 370 

the entire tissue is exposed to a single magnitude and electric field direction (e.g. 1 V/m normal to the 371 

cortical surface). An experimental measure from brain slices, which can be electrophysiological or 372 

molecular, can then be related to the applied electric field as a proxy for local tissue response to escalating 373 

electric field intensity. While some variability in response to a given electric field is expected in any 374 

experimental system, brain slices offer the possibility for high-throughput experimentation yielding results 375 

with high confidence. 376 

 In-vivo experiments involve non-invasive stimulation, under current control [26]. The animal 377 

anatomy will determine the resulting electric field in the ROI, and varied electric field across other brain 378 

regions which may influence outcomes (Figure 3 A.2). Brain electric field distribution can be predicted 379 

using current flow models [5, 107, 108]. For any given applied current, significant inter-species variation 380 

and some inter-animal variation is expected in the resulting brain electric field. An experimental measure 381 

from animals, which can span electrophysiological, molecular, or behavioral, is correlated with the applied 382 

current. Variability in response across animals for a given dose, can be minimized through experimental 383 

design.  384 

In a conventional tDCS current intensity dose response experiments, two or more stimulation 385 

currents (e.g. 1 mA and 2 mA) are applied across individuals using conventional sponge-pad electrodes 386 

(Figure B.2). While straightforward from a design perspective, this approach has several methodological 387 

caveats. Applying fixed current in a population lead to significant inter-individual differences in brain EF 388 

that are a function of each subject’s head anatomy [11]. Considering a relatively wide distribution of brain 389 

EF in ROI, means that some subjects in the “low dose” (e.g. 1 mA) group may have a higher EF in the ROI 390 

than some subjects in the “high dose” (e.g. 2 mA) group. The range of doses typically explored (e.g. 2x 391 

from 1 mA to 2 mA) is less than the range of sensitivity across subjects (e.g. 3-5x across healthy adults 392 

[44]). Use of a wider current range (if tolerated) mediates these overlaps, but does not mitigate the large 393 

variance in effective brain current with this approach.  394 
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Still more problematic is that with conventional tDCS montages, electric field is generated across 395 

wide regions of the brain, with the location of peak electric field varying across individuals, and often not 396 

occurring “under” the electrodes [2]. These issues compound such that the average electric field in a none 397 

ROI at the “low dose” can be higher than the electric field in the nominal ROI under high-dose. Ultimately, 398 

using this simplistic current intensity dose-response experimental design (Figure 3 B.2), one must interpret 399 

the effects of tDCS, and so the dose response, as reflecting the amalgamation of current flow across many 400 

regions with varied intensity. 401 

The above concerns can only be partially mitigated by normalizing electric field intensity to the 402 

ROI for each subject (Figure 3 B.1). In a second experimental design for human trials, using individual 403 

MRI and modeling the individualized current needed for each subject is determined to produce a consistent 404 

electric field in a given ROI. Notably in this method each subject will receive a unique current for a given 405 

target electric field (e.g. 0.5 V/m) in the ROI, and this current may vary several-fold variation in current 406 

applied across individuals (e.g. 0.6 mA, 1.4 mA, 2.1 mA…) as a result of the aforementioned inter-407 

individual anatomical differences [44]. Dose escalation therefore involved increased electric field in the 408 

ROI (e.g. 0.5 V/m, 1 V/m) not applying a multiple to the individual applied current for each subject. An 409 

experimental measure from the trial, which can span electrophysiological, imaging, or behavioral, is 410 

correlated with the electric field in the ROI. Because conventional tDCS pads are still used, current can 411 

flow through the brain with maximum electric field not necessarily in the ROI and not in a consistent 412 

location across subjects [44]. To the extent that current flow to other brain regions influences the outcome 413 

measure, it is a problem that the electric field intensity is not controlled outside the ROI.  414 

An addition to the fixed-current approach (Figure 3 B.2) is to retrospectively model individual 415 

current flow and then correlate with experimental measure with the post-hoc calculated electric field in the 416 

nominal ROI. This leads to a distribution of predicted electric fields with some subjects in the “low dose” 417 

current group (e.g. 1 mA) presenting a higher electric field in the ROI than some subjects in the “high dose” 418 

current group (e.g. 2 mA). This post-hoc modeling may not meaningfully mediate the concern with broad 419 

and varied brain current flow across subjects using pad montages, as the relative electric field distribution 420 
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across individuals will vary. 421 

Using High-Definition tDCS, and specifically the 4x1 montage, current is restricted to defined brain 422 

regions (ROI within the electrode ring); the peak electric field is within this brain region and thus consistent 423 

across subjects. In a third experimental design for human trials, a dose response trial design using 4x1 HD-424 

tDCS and the fixed current escalation method (e.g. 1 mA, 2 mA) provides evidence at the population level 425 

if increased intensity at the ROI is correlated with an outcome measure (Figure 3 C.2).  Focal EF produced 426 

by HD montage provide a substrate for controlling impact of stimulating functional/structural connected 427 

areas outside the ROI (Figure 3, C). Thus, an essential difference from conventional pad-tDCS is that 428 

electric fields outside the ROI are low enough that increasing applied current still does not result in 429 

significant current outside the ROI.   430 

In a fourth experimental design for human trials, using the 4x1 High-Definition tDCS montage, 431 

individualized modeling based in subject-specific MRI can be used to normalize the electric field across 432 

individuals (Figure 3 C.1).  An experimental measure from the trial, which can span electrophysiological, 433 

imaging, or behavioral, can be meaningfully correlated with the electric field in the ROI.   It is possible 434 

using the fixed current 4x1 High-Definition tDCS (Figure 3 C.2) to use individual MRIs for post-hoc 435 

modeling of electric fields in the ROI, which in contrast to the fixed electric field approach leads a 436 

distribution of electric field values. This scattered representation of electric fields in the ROI is not 437 

deleterious to dose-response analysis and in fact may lead to a wider variation and range of electric fields 438 

in the ROI. 439 

In all four experimental noted designs for human trial, variability in response for a given dose (fixed 440 

current or electric field controlled) is expected reflecting individual neurophysiological and brain state 441 

differences, which may be mitigate through rigorous experimental design (e.g. subject inclusion criteria, 442 

testing environment) but never eliminated. These physiological variations are compounded by any 443 

limitations in dose-response design described above which further emphasizes the need for careful 444 

consideration of dose-response experimental design. The four classifications described above by no means 445 

fully characterizes the diversity of approaches and issues which must be considered for meaningful tDCS 446 
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dose-response experiments [106, 109-112] and includes fundamental rigor in tDCS methodology [113]. For 447 

example, neural network modelling approaches can help generating hypotheses about the non-linear 448 

dynamics in neural activity under escalating tDCS dose [68].  449 

Synopsis 450 

Despite ongoing advances in the science of tDCS, we currently do not have a clear understanding 451 

of dose-response relationships in tDCS and principal open questions to be answered (Table 1). This limits 452 

empirical choice about the most efficacious stimulation protocol in a given context, renders inter-individual 453 

(and hence between study) comparison prone to complication, and hampers non-spurious assessment about 454 

the sources of tDCS response variability [114].   455 

The biophysics of tDCS, namely the fact that increasing current produces a linear increase in brain 456 

electric field (Figure 1) [9] and, then, presumably membrane polarization [13], is only a starting point and 457 

it does not allow conclusions that increasing tDCS intensity enhances a given neurophysiological, 458 

behavioral, or clinical outcome. A simplistic hypothesis on dose response emerged from classical animal 459 

studies (circa 1960) – anode/cathode increases/decreases excitability and plasticity - but modern efforts 460 

suggest a more nuanced dose-response. Investigations in animal studies provide a rich substrate for DCS 461 

mechanisms but are surprisingly lacking in electric fields relevant for humans (i.e. testing multiple 462 

intensities below 1 V/m). Studies using TMS-evoked potentials have also provided an extensive substrate 463 

to design and understand tDCS protocols [59], but challenges simple notions of linear dose-response of 464 

tDCS in humans on a group or individual level [52, 53].  465 

Canonical neurophysiological studies tested intensities only up to 1 mA in the absence of tasks [4, 466 

24] and suggested a simple polarity response consistent with classical animal studies. However, 467 

increasingly higher intensities are adopted (2 or 1.5 mA; [95, 115, 116] and tDCS is typically used in 468 

combination with training [117], where evidence suggest a multi-factorial dose response that is not 469 

necessarily monotonic with current intensity nor does it follow a simple excitability-change rule 470 

(anode/cathode, boost/suppress). Imaging studies support a complex response across brain regions. 471 

Computational models are a tool to normalize brain current intensity across individuals but are themselves 472 
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subject to assumptions about local dose response (e.g. doubling local current intensity in a ROI increases 473 

its response) to current that remains to be validated. 474 

In conclusion, extant data on tDCS mechanisms are inconclusive in regards to whether or not 475 

graded changes in applied current, and hence brain electric fields, enhance effect sizes in a linear or 476 

monotonic way. Put simply, we still do not know whether more intensity of electric field in a given brain 477 

area supports greater neurophysiological or behavioral outcomes [114]. We believe that this is a crucial 478 

point given extensive ongoing research on tDCS. Noting the heterogeneity of the literature on tDCS dose-479 

response [118], we urgently need to understand how much current we should deliver and how different 480 

brain regions will respond. We suggest rigorous efforts to quantify dose-response in humans, regardless of 481 

approach and outcome measure, will benefit from including computational current flow models. Despite 482 

these conclusions, we emphasize that uncertainty about dose-response does not necessarily diminish the 483 

impact of exhaustive testing of tDCS effects, its potential utility, or the value of an extensive mechanistic 484 

analysis that already exists on tDCS.  485 
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 808 

Figure 1: An aggregate linear tDCS intensity dose response requires linear input-output function in each scale from a 809 

single neuron to local neuronal circuits and plasticity, to large scale interconnected neuronal networks and ultimately 810 

behavior and task performance. Induced electric field (or current intensity) in the brain increases linearly with applied 811 

stimulation current. In well-controlled, in-vitro experiments, increased membrane polarization can be reasonably 812 

assumed with increasing tDCS intensity but in an active brain, nonlinear and complex behavior is more likely.  813 

Different experimental, modeling and imaging techniques assist to map tDCS modulation in specific scales.  814 
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 815 

Figure 2: Cortical electric field intensity and pattern across two different subjects (Head #1, Head #2) and standard 816 

averaged head (Head #3) for 1 mA stimulation using different electrode montages. A: anode (red) over left M1 and 817 

cathode (blue) over contralateral-supraorbital across different heads (A.1, A.2, A.3). B: bilateral DLPFC, anode (red) 818 

over left DLPFC (F3, EEG standard system) and cathode (blue) over right DLPFC (F4, EEG standard system) across 819 

different heads (B.1, B.2, B.3). Conventional pad electrodes deliver current to multiple brain regions that varies across 820 

subjects. For HD-tDCS configuration, C: anode (red) over M1 and cathodes (blue) with 6 mm center to center distance 821 

from anode for three different heads (C.1, C.2, C.3). ROI, region of interest.  822 
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Figure 3: Experimental design of dose-response studies in animal and man. 6 experimental paradigms are illustrated, 824 

2 in animal and 4 in human trials. Approaches where electric field is controlled (left column) are contrasted with 825 

approaches where applied current is fixed (right column). In human trial panels, the use of anatomical MRI scans is 826 

illustrated by a MRI cartoon. The use of a tDCS or HD-tDCS montage is illustrated on two semi-transparent head. 827 

Predicted electric field are shown in false color on the cortex. In each case, one or more outcome measures would be 828 

correlated against electric field in the ROI or the applied current, with the question-mark indicating a monotonic 829 

relationship is not necessarily established. The nominal ROI may be assumed to be “under” one electrode (red circle) 830 

with other brain region considered (yellow and black circles). In each panel, a simplified representation of the electric 831 

field distribution across a population (three stick figure cartoon) includes three brain regions (the nominal ROI in red, 832 

and other brain regions in yellow, black). These regions may be interconnected such that the outcome measure can 833 

reflect aggregate network stimulation. (A.1) In vitro animal brain slice models are stimulated with a uniform electric 834 

field. The electric field can be increased and an outcome measure recorded. Few in vitro studies applied several 835 

increments of electric magnitude in the tDCS range (<1 V/m). (A.2) In vivo animal models apply a fixed current with 836 

an epi-cranial electrode which results is animal-specific electric field in the ROI (red) and varied electric fields in 837 

other brain regions (Yellow, Black). Increasing the applied current increases all the electric field in each brain region 838 

proportionally. Electric field in animal models will be dramatically above the human case when comparable currents 839 

are applied. An outcome measures is recorded at varied applied current levels. (B.1) Using conventional electrode 840 

pads, controlled electric field intensity can be applied to a ROI in human trials by varying the applied current in each 841 

individual to generate a fixed electric field at the ROI. They require individual current flow modeling. The electric 842 

fields in other brain regions are not controlled and so vary across individuals and may be higher than in the ROI. An 843 

outcome measures is recorded at varied controlled ROI electric fields. (B.2) Using conventional electrode pads, a 844 

fixed current is applied across subjects for each dose, which results in variable electric field at the ROI as well as at 845 

other brain regions. For each subject, increasing the applied current increases all the electric field in each brain region 846 

proportionally. The electric field may be maximal outside the ROI. An outcome measures is recorded at varied applied 847 

current. [shaded inset] Post-hoc individual model may be used to reanalyze data based on predicted electric field in 848 

the ROI. This may result in some subjects in the lower-current group having a higher electric field at the ROI than 849 

some subjects in the low current group. (C.1) Using the high-definition 4x1 montage, controlled intensity electric field 850 

can be applied to a ROI in human trials by varying the applied current in each individual to generate a fixed electric 851 
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field at the ROI. The require individual current flow modeling based on MRI. Across individuals, the electric field is 852 

predicted to be focal and maximal at the ROI across stimulation intensities. An outcome measures is recorded at varied 853 

controlled ROI electric fields. (B.2) Using the high-definition 4x1 montage, fixed currents are applied across, which 854 

results in variable electric field at the ROI at each current, however, the maximal electric field remains in the ROI 855 

across individuals. For each subject, increasing the applied current increases all the electric field in each brain region 856 

proportionally, but the electric field remains minimal outside the ROI. An outcome measures is recorded at varied 857 

applied current. [shaded inset] Post-hoc individual model may be used to reanalyze data based on predicted electric 858 

field in the ROI. This may result in some subjects in the lower-current group having a higher electric field at the ROI 859 

than some subjects in the low current group. 860 

 861 

 862 

Table 1: Open questions on dose-response 863 

- Has the scale of research on tDCS efficacy outstripped understanding of dose response? 

- To what extent can (canonical) findings on dose-response in the resting brain support response 

during a behavioral task, where specific brain regions are activated therefore changing their 

susceptibility to stimulation? 

- To what extent could non-monotonic dose response, which is dependent on individual anatomy 

and subject to interactions with brain state (e.g. task engagement), lead to false-negatives? 

 

The limited work on tDCS dose response had typically applied a straightforward model to measure a 

response with increased tDCS intensity (e.g. from 1 to 2 mA).  

 

- To what extent is this approach subject to assumptions about the spatial extent of current flow?  

- Could not accounting for inter-individual anatomical variability in such cases lead to false-

negatives?  

- Could inter-individual variations in the intensity of current delivered to the brain combined with 

a non-monotonic response of the brain lead to false-negatives?  

- How can the assumptions, implicit in conventional dose-testing studies, be made more explicit? 

- In dose response studies, can computational models be used to retrospectively predict 

brain current intensity across individuals for a fixed applied current? 
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- Can the above retrospectively and prospective use of computational models reduce 

variability and/or increase effect size in tDCS efficacy trials? 

 864 

 865 


