28 research outputs found

    An extension of mean-field coarsening theory to include particle coalescence using nearest-neighbour functions

    Get PDF
    A mean field description of particle coalescence and Ostwald ripening is presented. The inclusion of particle coalescence events is shown to influence the evolution of the size distribution function and the time taken to reach the steady state particle coarsening regime. Nearest neighbour functions are used to represent the spatial arrangement of particles within multi-modal particle radius distributions and to calculate the frequency of coalescence events. The impact of particle coalescence upon long term coarsening kinetics has been studied. By tracking the evolution of a unimodal and bimodal dispersions in phase space, it is demonstrated that coalescence affects the paths of particle dispersion towards the steady state particle coarsening regime as well as the time scales to reach it

    Evaluating the challenges associated with the long-term reliable operation of industrial wind turbine gearboxes

    Get PDF
    Wind turbine gearboxes are required to operate under adverse operational conditions over a long service lifetime. Unfortunately, gearbox designers are yet to achieve the reliability anticipated by wind turbine manufacturers and operators. The poor understanding of variable loading conditions has resulted in the majority of wind turbine gearboxes being unable to reach their expected service lifetime of 20-25 years. This has led to an increasing need to investigate the fundamental issues associated with the degradation of wind turbine gearbox materials during operation in order to improve existing designs and optimise future ones. This paper investigates the various challenges that need to be addressed in order to achieve a noteworthy increase in the operational service lifetime of large-scale industrial wind turbine gearboxes

    Classical statistical distributions can violate Bell-type inequalities

    Get PDF
    We investigate two-particle phase-space distributions in classical mechanics characterized by a well-defined value of the total angular momentum. We construct phase-space averages of observables related to the projection of the particles' angular momenta along axes with different orientations. It is shown that for certain observables, the correlation function violates Bell's inequality. The key to the violation resides in choosing observables impeding the realization of the counterfactual event that plays a prominent role in the derivation of the inequalities. This situation can have statistical (detection related) or dynamical (interaction related) underpinnings, but non-locality does not play any role.Comment: v3: Extended version. To be published in J. Phys.

    A study of process-induced grain structures during steady state and non-steady state electron-beam welding of a titanium alloy

    Get PDF
    A detailed microstructural characterisation of the emerging weld-line grain structure, for bead-upon-plate welds in Ti-6Al-4V (Ti64) of differing plate thickness, was performed. The microstructure studied was formed during both steady state and non-steady state sections within the weld path, with the non-steady state portion being taken from the end of the plate as the weld bead and heat source overhang the edge of the plate. This allows for the effects of welding process conditions on the microstructural evolution to be determined. The weld pool geometry and 3D tomography of the weld-induced defects have been investigated. Detailed characterisation of microstructure and texture for different welding parameters and for steady and non-steady states have been used to identify physical parameters for the microstructure predictions that are difficult to obtain otherwise. The different states significantly affect the weld crown shape and formation, weld toe, weld bead depth and width. However, the heat affected zone (HAZ) remains unchanged. Regarding the microstructural evolution, both the steady and non-steady states have similar microstructure and texture. No defects were observed in the steady state section of welds, but sub-surface spherical pores have been observed in the non-steady state section of a weld. Finite element modelling to simulate the thermal-metallurgical-mechanical fields within the steady and non-steady state sections of the welds was considered, and the cooling rates predicted within steady state and non-steady sections were interrogated to improve the theoretical understanding of the microstructure and defect formation differences in these Ti64 EB weld regions

    Review of material modeling and digitalization in industry: barriers and perspectives

    Get PDF
    Materials modeling technologies are fundamental to explore, understand, and ultimately predict materials behavior. They are essential to solve challenges posed by the need to reduce human impact on the environment. Modeling and simulation of materials behavior have been recognized over the years as fundamental as an asset in industrial R & D, guiding the decision-making process regarding the design or optimization of new products and manufacturing processes. At the same time, it reduces product cost and development time. However, highlighting the revenue brought by using such tools is not trivial, especially because they mainly affect the complex activities such as the innovation process, whose return only becomes available in the long run and it is difficult to measure. This means that the materials modeling field is often overlooked in an industry setting, where it is not integrated in the company workflow. In some cases, modeling provides the potential to capture tacit knowledge preventing the loss of capability in an aging specialist community, that why its industrial integration is important. This paper explores the reason behind this dichotomy, presenting first what it is intended for the modeling process, and the main types used in materials application. The current industrial adoption is reviewed by outlining success stories, economic impact, business uptake, and barriers. Past and current approaches and strategies are also presented and discussed. In prospective, materials modeling plays a key role in developing material-centric industry for sustainable economy, providing physical understating (physics-based models) and fast approaches (data-driven solutions). Digitalization is the mean for the green economy and it needs to push for a more integration at the core of the business of materials modeling

    Reconstruction of microscopic thermal fields from oversampled infrared images in laser-based powder bed fusion

    Get PDF
    This article elucidates the need to consider the inherent spatial transfer function (blur), of any thermographic instrument used to measure thermal fields. Infrared thermographic data were acquired from a modified, commercial, laser-based powder bed fusion printer. A validated methodology was used to correct for spatial transfer function errors in the measured thermal fields. The methodology was found to make a difference of 40% to the measured signal levels and a 174 °C difference to the calculated effective temperature. The spatial gradients in the processed thermal fields were found to increase significantly. These corrections make a significant difference to the accuracy of validation data for process and microstructure modeling. We demonstrate the need for consideration of image blur when quantifying the thermal fields in laser-based powder bed fusion in this wor

    Metal powder bed fusion process chains: an overview of modelling techniques

    Get PDF
    Metal powder bed fusion (MPBF) is not a standalone process, and other manufacturing technologies, such as heat treatment and surface finishing operations, are often required to achieve a high-quality component. To optimise each individual process for a given component, its progression through the full process chain must be considered and understood, which can be achieved through the use of validated models. This article aims to provide an overview of the various modelling techniques that can be utilised in the development of a digital twin for MPBF process chains, including methods for data transfer between physical and digital entities and uncertainty evaluation. An assessment of the current maturity of modelling techniques through the use of technology readiness levels is conducted to understand their maturity. Summary remarks highlighting the advantages and disadvantages in physics-based modelling techniques used in MPBF research domains (i.e. prediction of: powder distortion; temperature; material properties; distortion; residual stresses; as well as topology optimisation), post-processing (i.e. modelling of: machining; heat treatment; and surface engineering), and digital twins (i.e. simulation of manufacturing process chains; interoperability; and computational performance) are provided. Future perspectives for the challenges in these MPBF research domains are also discussed and summarised

    A Qualified Kolmogorovian Account of Probabilistic Contextuality

    Full text link
    We describe a mathematical language for determining all possible patterns of contextuality in the dependence of stochastic outputs of a system on its deterministic inputs. The central notion is that of all possible couplings for stochastically unrelated outputs indexed by mutually incompatible values of inputs. A system is characterized by a pattern of which outputs can be "directly influenced" by which inputs (a primitive relation, hypothetical or normative), and by certain constraints imposed on the outputs (such as Bell-type inequalities or their quantum analogues). The set of couplings compatible with these constraints represents a form of contextuality in the dependence of outputs on inputs with respect to the declared pattern of direct influences.Comment: Lecture Notes in Computer Science 8369, 201-212 (2014
    corecore