219 research outputs found

    Feedback Cooling of a Single Neutral Atom

    Get PDF
    We demonstrate feedback cooling of the motion of a single rubidium atom trapped in a high-finesse optical resonator to a temperature of about 160 \mu K. Time-dependent transmission and intensity-correlation measurements prove the reduction of the atomic position uncertainty. The feedback increases the 1/e storage time into the one second regime, 30 times longer than without feedback. Feedback cooling therefore rivals state-of-the-art laser cooling, but with the advantages that it requires less optical access and exhibits less optical pumping.Comment: 5 pages, 4 figure

    Molecular mechanism underlying the action of zona-pellucida glycoproteins on mouse sperm

    Get PDF
    Mammalian oocytes are enveloped by the zona pellucida (ZP), an extracellular matrix of glycoproteins. In sperm, stimulation with ZP proteins evokes a rapid Ca2+ influx via the sperm-specific, pH-sensitive Ca2+ channel CatSper. However, the physiological role and molecular mechanisms underlying ZP-dependent activation of CatSper are unknown. Here, we delineate the sequence of ZP-signaling events in mouse sperm. We show that ZP proteins evoke a rapid intracellular pH i increase that rests predominantly on Na+/H+ exchange by NHA1 and requires cAMP synthesis by the soluble adenylyl cyclase sAC as well as a sufficiently negative membrane potential set by the spem-specific K+ channel Slo3. The alkaline-activated CatSper channel translates the ZP-induced pH i increase into a Ca2+ response. Our findings reveal the molecular components underlying ZP action on mouse sperm, opening up new avenues for understanding the basic principles of sperm function and, thereby, mammalian fertilization

    Re-visiting the Protamine-2 locus: deletion, but not haploinsufficiency, renders male mice infertile

    Get PDF
    Protamines are arginine-rich DNA-binding proteins that replace histones in elongating spermatids. This leads to hypercondensation of chromatin and ensures physiological sperm morphology, thereby protecting DNA integrity. In mice and humans, two protamines, protamine-1 (Prm1) and protamine-2 (Prm2) are expressed in a species-specific ratio. In humans, alterations of this PRM1/PRM2 ratio is associated with subfertility. By applying CRISPR/Cas9 mediated gene-editing in oocytes, we established Prm2-deficient mice. Surprisingly, heterozygous males remained fertile with sperm displaying normal head morphology and motility. In Prm2-deficient sperm, however, DNA-hypercondensation and acrosome formation was severely impaired. Further, the sperm displayed severe membrane defects resulting in immotility. Thus, lack of Prm2 leads not only to impaired histone to protamine exchange and disturbed DNA-hypercondensation, but also to severe membrane defects resulting in immotility. Interestingly, previous attempts using a regular gene-targeting approach failed to establish Prm2-deficient mice. This was due to the fact that already chimeric animals generated with Prm2+/− ES cells were sterile. However, the Prm2-deficient mouse lines established here clearly demonstrate that mice tolerate loss of one Prm2 allele. As such they present an ideal model for further studies on protamine function and chromatin organization in murine sperm

    Recent Developments in Algorithmic Teaching

    Full text link
    Abstract. The present paper surveys recent developments in algorith-mic teaching. First, the traditional teaching dimension model is recalled. Starting from the observation that the teaching dimension model some-times leads to counterintuitive results, recently developed approaches are presented. Here, main emphasis is put on the following aspects derived from human teaching/learning behavior: the order in which examples are presented should matter; teaching should become harder when the memory size of the learners decreases; teaching should become easier if the learners provide feedback; and it should be possible to teach infinite concepts and/or finite and infinite concept classes. Recent developments in the algorithmic teaching achieving (some) of these aspects are presented and compared.

    Mitochondrial Physiology and Gene Expression Analyses Reveal Metabolic and Translational Dysregulation in Oocyte-Induced Somatic Nuclear Reprogramming

    Get PDF
    While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT), the enucleated oocyte (ooplasm) must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene). We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism

    PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia

    Get PDF
    The tendency of mitochondria to undergo or resist BCL2-controlled apoptosis (so-called mitochondrial priming) is a powerful predictor of response to cytotoxic chemotherapy. Fully exploiting this finding will require unraveling the molecular genetics underlying phenotypic variability in mitochondrial priming. Here, we report that mitochondria) apoptosis resistance in T cell acute lymphoblastic leukemia (T-ALL) is mediated by inactivation of polycomb repressive complex 2 (PRC2). In T-ALL clinical specimens, loss-of-function mutations of PRC2 core components (EZH2, FED, or SUZ12) were associated with mitochondrial apoptosis resistance. In T-ALL cells, PRC2 depletion induced resistance to apoptosis induction by multiple chemotherapeutics with distinct mechanisms of action. PRC2 loss induced apoptosis resistance via transcriptional up-regulation of the LIM domain transcription factor CRIP2 and downstream up-regulation of the mitochondrial chaperone TRAP1. These findings demonstrate the importance of mitochondrial apoptotic priming as a prognostic factor in T-ALL and implicate mitochondrial chaperone function as a molecular determinant of chemotherapy response

    The Policy Dystopia Model:an interpretive analysis of tobacco industry political activity

    Get PDF
    BACKGROUND: Tobacco industry interference has been identified as the greatest obstacle to the implementation of evidence-based measures to reduce tobacco use. Understanding and addressing industry interference in public health policy-making is therefore crucial. Existing conceptualisations of corporate political activity (CPA) are embedded in a business perspective and do not attend to CPA's social and public health costs; most have not drawn on the unique resource represented by internal tobacco industry documents. Building on this literature, including systematic reviews, we develop a critically informed conceptual model of tobacco industry political activity. METHODS AND FINDINGS: We thematically analysed published papers included in two systematic reviews examining tobacco industry influence on taxation and marketing of tobacco; we included 45 of 46 papers in the former category and 20 of 48 papers in the latter (n = 65). We used a grounded theory approach to build taxonomies of "discursive" (argument-based) and "instrumental" (action-based) industry strategies and from these devised the Policy Dystopia Model, which shows that the industry, working through different constituencies, constructs a metanarrative to argue that proposed policies will lead to a dysfunctional future of policy failure and widely dispersed adverse social and economic consequences. Simultaneously, it uses diverse, interlocking insider and outsider instrumental strategies to disseminate this narrative and enhance its persuasiveness in order to secure its preferred policy outcomes. Limitations are that many papers were historical (some dating back to the 1970s) and focused on high-income regions. CONCLUSIONS: The model provides an evidence-based, accessible way of understanding diverse corporate political strategies. It should enable public health actors and officials to preempt these strategies and develop realistic assessments of the industry's claims

    Monitoring Alzheimer Amyloid Peptide Aggregation by EPR

    Get PDF
    Plaques containing the aggregated β-Amyloid (Aβ) peptide in the brain are the main indicators of Alzheimer’s disease. Fibrils, the building blocks of plaques, can also be produced in vitro and consist of a regular arrangement of the peptide. The initial steps of fibril formation are not well understood and could involve smaller aggregates (oligomers) of Aβ. Such oligomers have even been implicated as the toxic agents. Here, a method to study oligomers on the time scale of aggregation is suggested. We have labeled the 40 residue Aβ peptide variant containing an N-terminal cysteine (cys-Aβ) with the MTSL [1-oxyl-2,2,5,5-tetramethyl-Δ-pyrroline-3-methyl] methanethiosulfonate spin label (SL-Aβ). Fibril formation in solutions of pure SL-Aβ and of SL-Aβ mixed with Aβ was shown by Congo-red binding and electron microscopy. Continuous-wave 9 GHz electron paramagnetic resonance reveals three fractions of different spin-label mobility: one attributed to monomeric Aβ, one to a multimer (8–15 monomers), and the last one to larger aggregates or fibrils. The approach, in principle, allows detection of oligomers on the time scale of aggregation
    • …
    corecore