532 research outputs found

    Microscopic Origin of the Hofmeister Effect in Gelation Kinetics of Colloidal Silica.

    Get PDF
    The gelation kinetics of silica nanoparticles is a central process in physical chemistry, yet it is not fully understood. Gelation times are measured to increase by over 4 orders of magnitude, simply changing the monovalent salt species from CsCl to LiCl. This striking effect has no microscopic explanation within current paradigms. The trend is consistent with the Hofmeister series, pointing to short-ranged solvation effects not included in the standard colloidal (DLVO) interaction potential. By implementing a simple form for short-range repulsion within a model that relates the gelation timescale to the colloidal interaction forces, we are able to explain the many orders of magnitude difference in the gelation times at fixed salt concentration. The model allows us to estimate the magnitude of the non-DLVO hydration forces, which dominate the interparticle interactions on the length scale of the hydrated ion diameter. This opens the possibility of finely tuning the gelation time scale of nanoparticles by just adjusting the background electrolyte species.We acknowledge financial support from: Unilever Plc (E.S.); the Ernest Oppenheimer Fellowship at Cambridge (to 1st June 2014), and by the Technische Universität München Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement 291763 (A.Z.); the Winton Programme for the Physics of Sustainability (B.O.C.).This is the accepted manuscript. The final version is available at http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b01300

    Genomic analysis of the function of the transcription factor gata3 during development of the Mammalian inner ear

    Get PDF
    We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKB beta, a dramatic increase in Akt1/PKB alpha protein and relocation of Akt1/PKB alpha from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27(kip1), a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome

    Assembly of Protein Building Blocks Using a Short Synthetic Peptide

    Get PDF
    Combining proteins or their defined domains offers new enhanced functions. Conventionally, two proteins are either fused into a single polypeptide chain by recombinant means or chemically cross-linked. However, these strategies can have drawbacks such as poor expression (recombinant fusions) or aggregation and inactivation (chemical cross-linking), especially in the case of large multifunctional proteins. We developed a new linking method which allows site-oriented, noncovalent, yet irreversible stapling of modified proteins at neutral pH and ambient temperature. This method is based on two distinct polypeptide linkers which self-assemble in the presence of a specific peptide staple allowing on-demand and irreversible combination of protein domains. Here we show that linkers can either be expressed or be chemically conjugated to proteins of interest, depending on the source of the proteins. We also show that the peptide staple can be shortened to 24 amino acids still permitting an irreversible combination of functional proteins. The versatility of this modular technique is demonstrated by stapling a variety of proteins either in solution or to surfaces

    Methodological considerations in injury burden of disease studies across Europe: a systematic literature review

    Get PDF
    Background Calculating the disease burden due to injury is complex, as it requires many methodological choices. Until now, an overview of the methodological design choices that have been made in burden of disease (BoD) studies in injury populations is not available. The aim of this systematic literature review was to identify existing injury BoD studies undertaken across Europe and to comprehensively review the methodological design choices and assumption parameters that have been made to calculate years of life lost (YLL) and years lived with disability (YLD) in these studies. Methods We searched EMBASE, MEDLINE, Cochrane Central, Google Scholar, and Web of Science, and the grey literature supplemented by handsearching, for BoD studies. We included injury BoD studies that quantified the BoD expressed in YLL, YLD, and disability-adjusted life years (DALY) in countries within the European Region between early-1990 and mid-2021. Results We retrieved 2,914 results of which 48 performed an injury-specific BoD assessment. Single-country independent and Global Burden of Disease (GBD)-linked injury BoD studies were performed in 11 European countries. Approximately 79% of injury BoD studies reported the BoD by external cause-of-injury. Most independent studies used the incidence-based approach to calculate YLDs. About half of the injury disease burden studies applied disability weights (DWs) developed by the GBD study. Almost all independent injury studies have determined YLL using national life tables. Conclusions Considerable methodological variation across independent injury BoD assessments was observed; differences were mainly apparent in the design choices and assumption parameters towards injury YLD calculations, implementation of DWs, and the choice of life table for YLL calculations. Development and use of guidelines for performing and reporting of injury BoD studies is crucial to enhance transparency and comparability of injury BoD estimates across Europe and beyond

    Anti-cancer effects and mechanism of actions of aspirin analogues in the treatment of glioma cancer

    Get PDF
    INTRODUCTION: In the past 25 years only modest advancements in glioma treatment have been made, with patient prognosis and median survival time following diagnosis only increasing from 3 to 7 months. A substantial body of clinical and preclinical evidence has suggested a role for aspirin in the treatment of cancer with multiple mechanisms of action proposed including COX 2 inhibition, down regulation of EGFR expression, and NF-κB signaling affecting Bcl-2 expression. However, with serious side effects such as stroke and gastrointestinal bleeding, aspirin analogues with improved potency and side effect profiles are being developed. METHOD: Effects on cell viability following 24 hr incubation of four aspirin derivatives (PN508, 517, 526 and 529) were compared to cisplatin, aspirin and di-aspirin in four glioma cell lines (U87 MG, SVG P12, GOS – 3, and 1321N1), using the PrestoBlue assay, establishing IC50 and examining the time course of drug effects. RESULTS: All compounds were found to decrease cell viability in a concentration and time dependant manner. Significantly, the analogue PN517 (IC50 2mM) showed approximately a twofold increase in potency when compared to aspirin (3.7mM) and cisplatin (4.3mM) in U87 cells, with similar increased potency in SVG P12 cells. Other analogues demonstrated similar potency to aspirin and cisplatin. CONCLUSION: These results support the further development and characterization of novel NSAID derivatives for the treatment of glioma

    Use of Ionic Liquid in Fabrication, Characterization, and Processing of Anodic Porous Alumina

    Get PDF
    Two different ionic liquids have been tested in the electrochemical fabrication of anodic porous alumina in an aqueous solution of oxalic acid. It was found that during galvanostatic anodization of the aluminum at a current density of 200 mA/cm2, addition of 0.5% relative volume concentration of 1-butyl-3-methylimidazolium tetrafluoborate resulted in a three-fold increase of the growth rate, as compared to the bare acidic solution with the same acid concentration. This ionic liquid was also used successfully for an assessment of the wettability of the outer surface of the alumina, by means of liquid contact angle measurements. The results have been discussed and interpreted with the aid of atomic force microscopy. The observed wetting property allowed to use the ionic liquid for protection of the pores during a test removal of the oxide barrier layer
    corecore