215,248 research outputs found

    Sustainability analysis of Chinese transport policy

    Get PDF
    Whilst the world economy is developed, the life and development of human beings have been threatened by the imbalance among environmental and ecological aspects. Thus sustainability is becoming increasingly the focus of various social fields. For most developing countries, a strategy with good sustainability for social development is of long-term significance to keep the economy in expansion. This paper first reviews the conceptual framework and up-to-date development of sustainability. Second, it reviews the current transport situation of China and its future demands. Third, the paper analyses transport policy from the viewpoints of energy consumption and environment pollution caused by transportation. It finally summarises suggestions for transport policy that China should consider in the future

    Atomic electron correlation in nuclear electron capture

    Get PDF
    The effect of electron-electron Coulomb correlation on orbital electron capture by the nucleus was treated by the multiconfigurational Hartree-Fock approach. The theoretical Be-7 L/K capture ratio was found to be 0.086, and the Ar-37 M/L ratio, 0.102. Both ratios were smaller than the independent particle predictions. Measurements exist for the Ar M/L ratio, and agreement between theory and experiment was excellent

    Multiplet effects on the L(2,3) fluorescence yield of multiply ionized Ar

    Get PDF
    The 2p fluorescence yield of argon in the presence of 0 to 6 3p holes was calculated by statistically averaging the fluorescence yields of initial state that consist of individual multiplet configurations. These configurations were formed by coupling the 2p vacancy to the partially filled 3p shell. Results agree reasonably well with experimental fluorescence yields deduced from ion-atom collision measurements

    From urban to national heat island: The effect of anthropogenic heat output on climate change in high population industrial countries

    Get PDF
    The project presented here sought to determine whether changes in anthropogenic thermal emission can have a measurable effect on temperature at the national level, taking Japan and Great Britain as type examples. Using energy consumption as a proxy for thermal emission, strong correlations (mean r2 = 0.90 and 0.89, respectively) are found between national equivalent heat output (HO) and temperature above background levels Δt averaged over 5‐ to 8‐yr periods between 1965 and 2013, as opposed to weaker correlations for CMIP5 model temperatures above background levels Δmt (mean r2 = 0.52 and 0.10). It is clear that the fluctuations in Δt are better explained by energy consumption than by present climate models, and that energy consumption can contribute to climate change at the national level on these timescales

    A high specific capacity membraneless aluminum-air cell operated with an inorganic/organic hybrid electrolyte

    Get PDF
    Aluminum-air cells have attracted a lot of interests because they have the highest volumetric capacity density in theory among the different metal-air systems. To overcome the self-discharge issue of aluminum, a microfluidic aluminum-air cell working with KOH methanol-based anolyte was developed in this work. A specific capacity up to 2507 mAh g¯¹ (that is, 84.1% of the theoretical value) was achieved experimentally. The KOH concentration and water content in the methanol-based anolyte were found to have direct influence on the cell performance. A possible mechanism of the aluminum reactions in KOH methanol-based electrolyte was proposed to explain the observed phenomenon

    Mass of Rotating Black Holes in Gauged Supergravities

    Get PDF
    The masses of several recently-constructed rotating black holes in gauged supergravities, including the general such solution in minimal gauged supergravity in five dimensions, have until now been calculated only by integrating the first law of thermodynamics. In some respects it is more satisfactory to have a calculation of the mass that is based directly upon the integration of a conserved quantity derived from a symmetry principal. In this paper, we evaluate the masses for the newly-discovered rotating black holes using the conformal definition of Ashtekar, Magnon and Das (AMD), and show that the results agree with the earlier thermodynamic calculations. We also consider the Abbott-Deser (AD) approach, and show that this yields an identical answer for the mass of the general rotating black hole in five-dimensional minimal gauged supergravity. In other cases we encounter discrepancies when applying the AD procedure. We attribute these to ambiguities or pathologies of the chosen decomposition into background AdS metric plus deviations when scalar fields are present. The AMD approach, involving no decomposition into background plus deviation, is not subject to such complications. Finally, we also calculate the Euclidean action for the five-dimensional solution in minimal gauged supergravity, showing that it is consistent with the quantum statistical relation.Comment: Typos corrected and references update
    corecore