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ABSTRACT

The masses of several recently-constructed rotating black holes in gauged supergravities,

including the general such solution in minimal gauged supergravity in five dimensions, have

until now been calculated only by integrating the first law of thermodynamics. In some

respects it is more satisfactory to have a calculation of the mass that is based directly upon

the integration of a conserved quantity derived from a symmetry principal. In this paper,

we evaluate the masses for the newly-discovered rotating black holes using the conformal

definition of Ashtekar, Magnon and Das (AMD), and show that the results agree with the

earlier thermodynamic calculations. We also consider the Abbott-Deser (AD) approach,

and show that this yields an identical answer for the mass of the general rotating black hole

in five-dimensional minimal gauged supergravity. In other cases we encounter discrepancies

when applying the AD procedure. We attribute these to ambiguities or pathologies of the

chosen decomposition into background AdS metric plus deviations when scalar fields are

present. The AMD approach, involving no decomposition into background plus deviation,

is not subject to such complications. Finally, we also calculate the Euclidean action for the

five-dimensional solution in minimal gauged supergravity, showing that it is consistent with

the quantum statistical relation.

Research supported in part by DOE grant DE-FG03-95ER40917.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/232281062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/hep-th/0510081v3


Contents

1 Introduction 2

2 Rotating black holes in D = 5 minimal gauged supergravity 6

2.1 Conformal AMD mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Euclidean action and the QSR . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 5-dimensional Black Holes in U(1)3 Gauged Supergravity 10

3.1 A 3-charge rotating black hole . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Single-charge rotating black hole . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 3-charge black hole with equal rotation parameters . . . . . . . . . . . . . . 13

4 Rotating Black Holes in D = 4 and D = 7 Gauged Supergravities 13

4.1 D = 4 SO(4) gauged supergravity . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 D = 7 gauged supergravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Abbott-Deser Mass for the Rotating Black Holes 16

5.1 The Abbott-Deser mass in gauged supergravity . . . . . . . . . . . . . . . . 16

5.2 Rotating black hole in five-dimensional minimal gauged supergravity . . . . 18

5.3 AD masses for the other rotating black holes . . . . . . . . . . . . . . . . . 18

5.4 Subtleties in the AD procedure . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Discussion and Conclusions 26

1



1 Introduction

With the discovery of the AdS/CFT correspondence, it has become of considerable interest

to study the solutions of gauged supergravities in five and other dimensions. Amongst the

most important such solutions are those that describe black holes. In recent times there

has been much progress in constructing the black hole solutions of gauged supergravity,

both supersymmetric and non-supersymmetric. For a variety of reasons, it is of particular

interest to study the solutions describing charged rotating black holes.

The general solution describing a non-extremal charged rotating black hole in five-

dimensional minimal gauged supergravity was obtained recently in [1]. It is characterised by

four parameters, associated with the mass, the charge, and the two angular momenta in two

orthogonal spatial 2-planes. It can also be viewed as a solution in N = 2 gauged supergrav-

ity coupled to two vector multiplets, in which the electric charges carried by the graviphoton

and the two additional U(1) gauge fields are set equal. A second recently-obtained solution

of the N = 2 theory corresponds to a situation where the three charges are again non-zero,

with two equal and the third related to these in a fixed ratio [2]. Another solution found

in [2] corresponds to having only one non-vanishing charge, and one non-vanishing rotation

parameter. Previously, solutions had been obtained in which the two rotation parameters

were set equal, and with three equal [3] or three unequal [4] charges.

In this paper, we shall investigate some aspects of the thermodynamics of the solutions

obtained in [1, 2]. One of the important quantities that one needs to know is the mass,

or energy, of the solution. As was discussed in [5], the energy of a rotating black hole

in an asymptotically AdS background must be calculated with considerable care, because

of the complications associated with the absence of an asymptotically flat region at large

distance, and because of the rotation. In particular, the absence of an asymptotically

flat region means that one cannot use the standard ADM [6] procedure for defining the

energy. Alternative approaches include that of Abbott and Deser [7], and the use of Komar

integrals (see [8], for a discussion of this method in asymptotically AdS backgrounds). The

Komar integral definition, involving the integration of ∗dK over a spatial hypersurface at

infinity, where K = Kµdx
µ and Kµ∂µ is a timelike Killing vector, suffers from the problem

that the integrand diverges at large radius. One therefore has to make a subtraction of a

background AdS contribution in order to obtain a finite result, and finding a way to to this

unambiguously can be somewhat problematical. In the Abbott and Deser (AD) definition

one also makes decomposition of the metric in which a background AdS term is subtracted,

and then integrates certain derivatives of the difference over a spatial hypersurface at infinity.
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In [5], two relatively straightforward methods were employed, for calculating the energies

of the uncharged rotating AdS black hole solutions that were found in D = 4 dimensions [9],

D = 5 dimensions [10] and in all dimensions D ≥ 6 [11, 12]. The first method involved

evaluating all the other quantities that appear in the first law of thermodynamics

dE = TdS +ΩidJi , (1.1)

and then integrating (1.1) in order to obtain the energy E. The advantage of this method

is that the Hawking temperature T , the entropy S, the angular velocities Ωi and the angu-

lar momenta Ji are all easily calculated, with no complications associated with divergent

integrals. The second method employed in [5] was to use the conformal mass definition of

Ashtekar, Magnon and Das [13, 14]. This AMD definition expresses the mass in terms of

an integral of certain components of the Weyl tensor over the spatial conformal boundary

at infinity. Since the metric approaches AdS asymptotically, the integrand falls off and

the integral is inherently well-defined. It was shown in [5] that the first-law calculation

and the AMD calculation of the mass are in agreement for the uncharged rotating black

holes. Analogous results for the AMD masses of the five-dimensional black holes with equal

rotation parameters found in [3] were obtained in [15], giving agreement with an earlier

thermodynamic calculation of the mass in [16]. Another calculation of the masses of the

higher-dimensional uncharged rotating black holes was given in [17], using the Katz-Bičák-

Lynden-Bell superpotential. (See also [18–20] for further discussions of mass in asymptoti-

cally AdS spacetimes.)

In [1,2], the energies for the charged rotating black hole solutions were calculated using

the method of integrating the first law of thermodynamics, which reads

dE = TdS +ΩidJi +Φ dQ , (1.2)

where Φ is the electrostatic potential difference between the horizon and infinity, and Q is

the conserved electric charge. In the present paper, we shall instead calculate the energies

using the the Ashtekar-Magnon-Das approach. As we shall see, the results agree with the

earlier calculations based on the integration of the first law of thermodynamics. Establishing

this consistency is important, because it makes a direct connection between the mass and

the integration of conserved quantities.

A further test of the thermodynamic properties of the black hole solutions is provided

by calculating the Euclidean action I, since the partition function in a Gibbs ensemble at

fixed temperature T , angular velocity Ωi and electrostatic potential Φ should be given by

Z(T,Ωi,Φ) = e−β Φthermo , (1.3)
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where β = 1/T and Φthermo denotes the thermodynamic potential. On the other hand, in

the one-loop quantum gravity approximation the partition function is given by Z = e−I , and

so one has the Quantum Statistical Relation, or QSR, first proposed for quantum gravity

in [24], that

Φthermo ≡ E − TS − ΩiJi − ΦQ = IT . (1.4)

In this paper, we also calculate the Euclidean action for the general five-dimensional rotating

black hole in minimal gauged supergravity, and verify that it is indeed consistent with the

quantum statistical relation.

The AMD construction gives a conformal definition of a conserved quantity Q[K] asso-

ciated to any asymptotic Killing field K in an asymptotically AdS spacetime [13, 14]. We

shall summarise the AMD method in the notation of [5]. We assume that asymptotically,

the D-dimensional metric satisfies the Einstein equations

Rµν = −(D − 1) l−2 gµν , (1.5)

where l is the length-scale of the asymptotically AdS metric. In canonical AdS coordinates,

the metric therefore approaches

ds2 = −(1 + y2 l−2) dt2 +
dy2

1 + y2 l−2
+ y2 dΩ2

D−2 (1.6)

at large distance y.

Consider an asymptotically AdS bulk spacetime {X, g}, equipped with a conformal

boundary {∂X, h̄}. It admits a conformal compactification {X̄, ḡ} if X̄ = ⊔∂X is the

closure of X, and the metric ḡ extends smoothly onto X̄ where ḡ = Ω2 g for some function

Ω with Ω > 0 in X and Ω = 0 on ∂X, with dΩ 6= 0 on ∂X. One might, for example, take

Ω =
l

y
. (1.7)

Since Ω is determined only up to a factor, Ω → f Ω, where the function f is non-zero

on ∂X, the metric ḡ on X̄ and its restriction h̄ = ḡ|∂X are defined only up to a non-

singular conformal factor. The conformal equivalence class {∂X̄, h̄} is called the conformal

boundary of X. If C̄µ
νρσ is the Weyl tensor of the conformally rescaled metric ḡµν = Ω2 gµν ,

and n̄µ ≡ ∂µΩ, then in D dimensions one defines

Ēµ
ν = l2ΩD−3 n̄ρ n̄σ C̄µ

ρνσ . (1.8)

This is the electric part of the Weyl tensor on the conformal boundary. The conserved

charge Q[K] associated to the asymptotic Killing vector K is then given by

Q[K] =
l

8π (D − 3)

∮

Σ

Ēµ
ν K

ν dΣ̄µ , (1.9)
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where dΣ̄µ is the area element of the (D − 2)-sphere section of the conformal boundary.1

Note that the expression (1.9) is invariant under the non-singular conformal transformations

of the boundary metric that we discuss above. Thus, one may take for Ω any conformal

factor that is related to (1.7) by a non-singular multiplicative factor.

In order to define the energy, one takes K = ∂/∂t, where t is the time coordinate

appearing in the asymptotic form (1.6) of the metric under investigation. The energy is

then given by2

E =
l

8π (D − 3)

∮

Σ

Ē t
t dΣ̄t . (1.11)

The organisation of the paper is as follows. In section 2, we use the AMD definition to

calculate the mass of the recently-constructed general rotating black hole solution of five-

dimensional minimal gauged supergravity, showing that it agrees with the earlier calculation

of the mass in [1], where it was obtained by integrating the first law of thermodynamics.

We also calculate the Euclidean action for the solution, and show that it is consistent with

the quantum statistical relation (1.4).

In section 3 we calculate the generalised AMD masses for some recently-obtained rotat-

ing black-hole solutions of maximal gauged five-dimensional supergravity, where there are

three charges carried by fields in the U(1)3 abelian subgroup of the SO(6) gauge group.

Again, we find that the AMD masses agree with the earlier results in [2], which were ob-

tained by integrating the first law.

Section 4 contains similar calculations of the AMD masses for the known rotating black-

hole solutions in four-dimensional and seven-dimensional gauged supergravities, and we find

agreement with the earlier calculations based on the integration of the first law.

1The derivation of (1.9) is discussed in [13,14]. The key point is that by making use of Bianchi identities,

one can show that

D̄
ν
Ēµν = 8π(D − 3) T̄νρ n̄

ν
h̄
ρ
µ , (1.10)

where D̄µ is the covariant derivative in the conformal boundary metric h̄µν , and T̄µν = Ω2−D Tµν , in the

limit as the boundary is approached, where Tµν is the energy-momentum tensor in the bulk.
2Note that some confusion in earlier literature arose when coordinate systems that were rotating asymp-

totically at infinity were used in an attempt to define the mass. As emphasised in [5], one should define

the mass with respect to an asymptotically-static coordinate system. Especially, when considering the ther-

modynamics of the system, it is highly advantageous to avoid using an asymptotically rotating coordinate

system whose rotation rate depends on the parameters of the black hole [23]. (For what appear to be largely

historical reasons, rotating AdS black holes were often presented in such rotating coordinate systems.) Of

course one could always readjust all calculations so as to refer them to the asymptotically-rotating frame,

but describing the physics from such a parameter-dependent rigid rotating frame is an easily avoidable and

unnecessary complication.
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In section 5, we consider the calculation of the black hole masses using the methods

of Abbott and Deser. The section begins with a brief summary of the AD procedure,

in which we extend the standard discussion of a pure Einstein theory with cosmological

constant to include to the case where there are matter fields, such as one has in a gauged

supergravity. Especially, in gauged supergravity there is usually a scalar potential rather

than a pure cosmological constant. We then use the AD procedure to calculate the mass of

the general rotating black hole in five-dimensional minimal gauged supergravity, which was

constructed in [1]. We find that the result agrees with our AMD calculation in section 2,

and also therefore with the earlier calculation from the integration of the first law. We then

consider the other rotating black holes in five, four and seven dimensions. We find in these

four and five dimensional examples that the AD procedure is rather tricky to implement,

because of ambiguities associated with the subtraction procedure when one separates the

metric into an AdS background plus deviations. To study this more fully, we look also

at the rather simple examples of multi-charge non-rotating black holes in five, four and

seven-dimensional gauged supergravities. The AD procedure rather straightforwardly gives

rise to the correct masses in the cases when the charges are set equal. However when

the charges are unequal, implying that non-trivial scalar fields are present in the solution,

the complications of the subtraction procedure again lead to difficulties in obtaining the

correct mass in an unambiguous manner, in the five and four-dimensional cases. We then

discuss two possible correction terms to the AD mass formula, incorporating additional

contributions from the scalar fields, and we relate these to corrections discussed previously

in the literature.

Finally, the paper ends with conclusions in section 6.

2 Rotating black holes in D = 5 minimal gauged supergravity

For our principal example, we consider the recently-discovered general rotating black holes

in D = 5 minimal gauged supergravity. The Lagrangian for the bosonic sector of the theory

is given by

L = (R + 12g2) ∗1l− 1
2
∗F ∧ F +

1

3
√
3
F ∧ F ∧A , (2.1)

where F = dA, and the gauge-coupling g is assumed to be positive, without loss of generality.

It is related to the asymptotic AdS radius l by l = 1/g. The rotating black hole with two

independent rotating parameters is given by [1]

ds2 = −∆θ [(1 + g2r2)ρ2dt+ 2qν] dt

Ξa Ξb ρ2
+

2q νω

ρ2
+
f

ρ4

(∆θ dt

ΞaΞb
− ω

)2

+
ρ2dr2

∆r
+
ρ2dθ2

∆θ

6



+
r2 + a2

Ξa
sin2 θdφ2 +

r2 + b2

Ξb
cos2 θdψ2 , (2.2)

A =

√
3q

ρ2

(∆θ dt

Ξa Ξb
− ω

)
, (2.3)

where

ν = b sin2 θdφ+ a cos2 θdψ , ω = a sin2 θ
dφ

Ξa
+ b cos2 θ

dψ

Ξb
,

∆r =
(r2 + a2)(r2 + b2)(1 + g2r2) + q2 + 2abq

r2
− 2m,

∆θ = 1− a2g2 cos2 θ − b2g2 sin2 θ , ρ2 = r2 + a2 cos2 θ + b2 sin2 θ ,

Ξa = 1− a2g2 , Ξb = 1− b2g2 , f = 2mρ2 − q2 + 2abqg2ρ2 . (2.4)

2.1 Conformal AMD mass

The metric (2.2) is written in an asymptotically non-rotating coordinate system. If one

defines new coordinates (y, θ̂) by

Ξa y
2 sin2 θ̂ = (r2 + a2) sin2 θ , Ξb y

2 cos2 θ̂ = (r2 + b2) cos2 θ , (2.5)

then it can be seen to approach (1.6) at large y. As we discussed earlier, we could choose

to define the boundary metric of the conformal compactification using the conformal factor

Ω = l/y (1.7). In practice, however, it is simpler to take

Ω =
l

r
=

1

gr
, (2.6)

which is related to (1.7) by the non-singular scale factor f = y/r. With this choice, the

relevant electric component of the Weyl tensor is given

Ē t
t =

1

g2Ω2
ḡαr ḡβrn̄rn̄rC

t
αtβ =

1

g4r4Ω6
(grr)2Ct

rtr . (2.7)

We find that as r → ∞, the leading order term of grr is g2r2, while asymptotically Ct
rtr is

given by

Ct
rtr =

2

g2Ξa Ξb r6

(
3m− 3a2g2m+ b2g2m− a2b2g4m+ 4abg2q − 4a3bg4q (2.8)

+4a2g2m sin2 θ − 4b2g2m sin2 θ + 4a3bg4q sin2 θ − 4ab3g4q sin2 θ
)
+O(r−8) .

Thus in the limit of large r we have

Ē t
t =

2g4

Ξa Ξb

(
3m− 3a2g2m+ b2g2m− a2b2g4m+ 4abg2q − 4a3bg4q

+4a2g2m sin2 θ − 4b2g2m sin2 θ + 4a3bg4q sin2 θ − 4ab3g4q sin2 θ
)

(2.9)
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To perform the integral, we need to find the hypersurface normal to the Killing vector

field. As r → ∞, the conformally rescaled metric is

ds̄2 = − ∆θ

ΞaΞb
dt2 +

1

g2∆θ
dθ2 +

1

g2Ξa
sin2 θdφ2 +

1

g2Ξb
cos2 θdψ2 (2.10)

The area element dΣµ is obtained from (2.10) as follows. First, we note that the 4-volume

element for the boundary metric (2.10) is given by

Vol =
sin θ cos θ

g3ΞaΞb
dt ∧ dθ ∧ dφ ∧ dψ . (2.11)

Now, we define dΣµ ≡ 〈∂µ,Vol〉, where the angle brackets indicate that one performs the

contraction (inner product) between the vector and the form, using the rule 〈∂µ, dxν〉 = δνµ.

Thus we shall, in particular, have

dΣt =
sin θ cos θ

g3ΞaΞb
dθ ∧ dφ ∧ dψ , (2.12)

where “t” is the coordinate-frame time index. Performing the integration, we find

E =
1

16πg4ΞaΞb

∫ 2π

0

dφ

∫ 2π

0

dψ

∫ π/2

0

dθ sin θ cos θ Ē t
t

=
mπ(2Ξa + 2Ξb − ΞaΞb) + 2πqabg2(Ξa + Ξb)

4Ξ2
aΞ

2
b

. (2.13)

This result agrees precisely with the mass obtained in [1] by integrating the first law of

thermodynamics.

2.2 Euclidean action and the QSR

In order to verify that the Quantum Statistical Relation (1.4) is satisfied, it is necessary to

calculate the Euclidean action, namely the integral of L given by (2.1), after Euclideanisa-

tion. This was evaluated in [10] for the case of the neutral Kerr-AdS solutions in four and

five dimensions, and in [5] for the neutral Kerr-AdS solutions in arbitrary dimension. It was

also evaluated for the rotating black hole in five-dimensional minimal gauged supergravity,

in the case where the rotation parameters are equal, in [15].

The action has to be defined with care, since the naive integration over the volume of

the Euclideanised metric gives infinity. To obtain a finite action, one cuts off the integration

at some large radius r = R, and makes an appropriate subtraction for an AdS metric with

the same boundary. Now, as R is sent to infinity, the subtracted action converges to a

finite result. It should be noted that there is no need to include the usual Gibbons-Hawking

boundary term involving the trace of the second fundamental form, because this is precisely

removed when the AdS subtraction is performed.
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The integration for the black hole metric is straightforward, albeit somewhat compli-

cated. In particular, we integrate the radial variable r from the Euclideanised horizon at

r = r+ (i.e. the origin of coordinates in the Euclidean regime) to the chosen large radius

R. To perform the AdS subtraction, we can use the metric obtained by setting the mass

and charge to zero in the black-hole metric, since then the AdS metric will be expressed di-

rectly in an appropriately adapted coordinate system. There is one subtlety concerning the

matching of the boundaries of the black-hole metric and the AdS metric at r = R. Namely,

one must rescale the Euclidean time coordinate τ in the AdS metric so that the volume

its r = R boundary is the same as the volume of the r = R boundary of the black-hole

metric. If γµν denotes the metric of the r = R boundary in the black-hole metric, and γ̄µν

is the corresponding metric AdS boundary metric obtained by setting the mass and charge

to zero, then we must choose a rescaled Euclidean time coordinate τ̄ for AdS such that

∫ √
γ dθdφdψdτ =

∫ √
γ̄ dθdφdψdτ̄ , (2.14)

where the integration is over the boundary at r = R. Thus we must define the rescaled

Euclidean time coordinate τ̄ in the AdS background according to

τ̄ = τ

∫ √
γ dθ∫ √
γ̄ dθ

. (2.15)

In particular, with τ in the black-hole metric having period β = 1/T , where T is the

Hawking temperature, it follows that τ̄ will have period

β̄ = β

∫ √
γ dθ∫ √
γ̄ dθ

. (2.16)

For the metric (2.2), we find that

β̄ = β
(
1− M

g2R4

)
+O(R−5) . (2.17)

A further subtlety concerns the lower limit of the radial integration in the AdS subtrac-

tion. Expressed in terms of the y coordinate appearing in (1.6), one should integrate out

from y = 0. Using (2.5), this translates into the statement that one should integrate out

from a radius r0, given by

r20 = −a
2Ξb sin

2 θ + b2 Ξa cos2 θ

Ξb sin
2 θ +Ξa cos2 θ

. (2.18)

(The fact that this defines an imaginary r0 is merely an artefact of the coordinate system

being used here.)
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The Hawking temperature for the metric (2.2) is given by [1]

T =
r4+[(1 + g2(2r2+ + a2 + b2)]− (ab+ q)2

2π r+ [(r2+ + a2)(r2+ + b2) + abq]
. (2.19)

After performing the steps described above, we then find that the Euclidean action for the

black-hole metric (2.2) is given by

I5 =
πβ

4ΞaΞb

[
m− g2(r2+ + a2)(r2+ + b2)− q2r2+

(r2+ + a2)(r2+ + b2) + abq

]
, (2.20)

The other relevant thermodynamic quantities were evaluated in [1], and are given by

S =
π2[(r2+ + a2)(r2+ + b2) + abq]

2ΞaΞbr+
,

Ωa =
a(r2+ + b2)(1 + g2r2+) + bq

(r2+ + a2)(r2+ + b2) + abq
, Ωb =

b(r2+ + a2)(1 + g2r2+) + aq

(r2+ + a2)(r2+ + b2) + abq
,

Ja =
π[2am+ qb(1 + a2g2)]

4Ξ2
a Ξb

, Jb =
π[2bm+ qa(1 + b2g2)]

4Ξ2
b Ξa

,

Φ =

√
3qr2+

(r2+ + a2)(r2+ + b2) + abq
, Q =

√
3πq

4Ξa Ξb
. (2.21)

It is now straightforward to substitute these and our expression (2.20) for the Euclidean

action into (1.4), and to confirm that the Quantum Statistical Relation is indeed satisfied.

3 5-dimensional Black Holes in U(1)3 Gauged Supergravity

The Lagrangian for the relevant bosonic sector of maximal gauged supergravity in five

dimensions is given by

L = R ∗1l− 1
2
∗dϕi ∧ dϕi − 1

2

3∑

i=1

X−2
i ∗F i ∧ F i + 4g2

3∑

i=1

X−1
i ∗1l + F 1 ∧ F 2 ∧A3 , (3.1)

where

X1 = e
−

1
√

6
ϕ1−

1
√

2
ϕ2 , X2 = e

−
1

√

6
ϕ1+

1
√

2
ϕ2 , X3 = e

2
√

6
ϕ1 . (3.2)

In the following two subsections, we shall consider two recently-discovered rotating black-

hole solutions in this theory, and use the AMD procedure to calculate the mass for each of

them. We find that these masses agree with those derived previously by integration of the

first law of thermodynamics.

3.1 A 3-charge rotating black hole

A rotating black hole solution with two independent rotation parameters was obtained [2].

The solution has three non-vanishing charges, with two of them set equal, and the third in
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a fixed ratio to the other two. Since the solution is rather complicated, we shall not present

explicitly here, but we refer the reader to [2] for all the details.

In [2], the metric is given in a coordinate system that is asymptotically rotating at

infinity. To obtain the mass of the black hole, it is necessary first to transform to an

asymptotically non-rotating frame. Starting from the metric given in [2], this is achieved

by making the redefinitions φ′ = φ+ ag2t and ψ′ = ψ + bg2t. We then take the conformal

factor defining the conformally-compactified boundary metric to be given by Ω = 1/(g r).

Following the same steps as before, we have Ē t
t given by (2.7), where at large r we find the

component Ct
rtr of the Weyl tensor takes the form

Ct
rtr =

2m

3g2(1− a2g2)(1− b2g2) r6

(
3(3 + 4s2) + b4g4s2(1 + 4 sin2 θ) (3.3)

+a4g4s2(5− 4 sin2 θ + b2g2(7− 8 sin2 θ))− a2g2(9 + 3b2g2(1 + 2s2)

+12 sin2 θ − s2(17 − 16 sin2 θ)− b4g4s2(1− 8 sin2 θ))

+b2g2(3− 12 sin2 θ − s2(1 + 16 sin2 θ))
)
+O

( 1

r7

)
.

It follows that

Ē t
t =

2g4m

3(1 − a2g2)(1 − b2g2)

(
3(3 + 4s2) + b4g4s2(1 + 4 sin2 θ)

+a4g4s2(5− 4 sin2 θ + b2g2(7− 8 sin2 θ))− a2g2(9 + 3b2g2(1 + 2s2)

+12 sin2 θ − s2(17− 16 sin2 θ)− b4g4s2(1− 8 sin2 θ))

+b2g2(3− 12 sin2 θ − s2(1 + 16 sin2 θ))
)
. (3.4)

The metric on the conformal boundary is again given by (2.10). Integrating over the hy-

persurface normal to the Killing vector field K = ∂/∂t, we then obtain the black hole

mass

E =
mπ

4Ξ2
aΞ

2
b

(
2Ξa + 2Ξb − ΞaΞb + (2Ξ2

a + 2Ξ2
b + 2ΞaΞb − Ξ2

aΞb − ΞaΞ
2
b)s

2
)
, (3.5)

where Ξa and Ξb are defined in (2.4). This is precisely the mass found in [2] by integrating

the first law of thermodynamics.

The direct calculation of the Euclidean action is rather intricate in this example. As we

saw in the previous case of the rotating black hole in the minimal gauged supergravity, one

always needs to perform the subtraction of a fiducial action for a pure AdS background with

a matching boundary at large distance, in order to obtain a finite result. In the present

case the process is rather more involved, presumably because of the presence of scalar fields

in the solution. We shall not present a direct calculation of the Euclidean action here.
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However, since it is useful for some purposes to know the expression for the action, we

shall present the result here obtained by substitution of the thermodynamic quantities,

which were derived in [2], into the quantum statistical relation (1.4). We then find that the

Euclidean action is given by

I5 =
πβ

4ΞaΞb

[
m− g2(r2+ + a2)(r2+ + b2) (3.6)

−
g2q

(
(r2+ + a2)(r2+ + b2)(4r2+ + a2 + b2) + 6qr2+(2r

2
+ + a2 + b2) + 8q2r2+

)

(r2+ + a2)(r2+ + b2) + 2qr2+

]
.

3.2 Single-charge rotating black hole

The solution is presented in equation (23) of [2], and owing to its complexity, we shall

not repeat it here. To achieve an asymptotic non-rotating frame, we make the coordinate

redefinition φ′ = φ+ ag2cwt. We define the conformally rescaled metric ḡab = Ω2gab where

Ω = 1/(gr). With n = dΩ = −1/(gr2) dr, the relevant electric Weyl tensor component is

Ē t
t =

1

g2Ω2
ḡαr ḡβrn̄rn̄rC

t
αtβ =

1

g2Ω6
grrgrr(− 1

gr2
)2Ct

rtr . (3.7)

As r → ∞, we find that the leading order behaviour of Ct
rtr is given by

Ct
rtr =

2m

3g2r6Ξ

(
4 sin2 θ (1− Ξ)(2wc2 − s2Ξ)− Ξ(s2 − 9wc2 + 2s2Ξ

)
+O

( 1

r7

)
. (3.8)

It follows that

Ē t
t =

2g4m

3Ξ

(
4 sin2 θ (1− Ξ)(2wc2 − s2Ξ)− Ξ(s2 − 9wc2 + 2s2Ξ

)
. (3.9)

The metric on the conformal boundary is given by

ds̄2 = −∆θ

Ξ
dt2 +

1

g2∆θ
dθ2 +

1

g2Ξ
sin2 θdφ2 +

1

g2
cos2 θdψ2 (3.10)

We integrate over the hypersurface normal to the Killing vector field and obtain the black

hole mass

E =
mπ

4Ξ2w(Ξ− w)
[Ξ− w(2 + Ξ) + w2Ξ(1 + Ξ)] , (3.11)

in agreement with the thermodynamic calculation in [2].

The thermodynamic quantities for this black hole were obtained in [2]. Using these, we

can derive the Euclidean action using the quantum statistical relation (1.4). We obtain the

result that

I5 =
πβ

4Ξ

[
m− g2r2+(r

2
+ + a2)− m(1− w)(2g2(1 + w)r2+ + 1− wΞ)

w(w − Ξ)

]
. (3.12)
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3.3 3-charge black hole with equal rotation parameters

The solution with three independendent charges, and with the two rotation parameters set

equal, was obtained in [4]. We shall work with the solution in the variables that were used

in section 3.1 of [26]. We find that the relevant component of the Weyl tensor has the

asymptotic form

Ct
rtr =

2m

g2r6

(
3 + a2g2 + 2

∑

i

s2i

)
+O

( 1

r7

)
, (3.13)

where si ≡ sinh δi and the δi are the charge (boost) parameters. Accordingly, we find that

the electric component in the conformal boundary metric is given by

Ē t
t = 2mg4

(
3 + a2g2 + 2

∑

i

s2i

)
. (3.14)

From this, we find after performing the integration in (1.11) that the mass is given by

E = 1
4
mπ

(
3 + a2g2 + 2

∑

i

s2i

)
, (3.15)

which precisely reproduces the result obtained in [26] by integrating the first law of ther-

modynamics.

4 Rotating Black Holes in D = 4 and D = 7 Gauged Super-

gravities

4.1 D = 4 SO(4) gauged supergravity

The general solution for rotating black holes in D = 4, N = 4, SO(4) gauged supergravity

were obtained in [25]. These carry two charges, associated with the gauged fields in the

U(1) × U(1) Cartan subalgebra of SO(4). First it is convenient to rescale the azimuthal

coordinate φ in [25] by a factor of Ξ−1, so that it has the canonical period 2π. Then

to achieve a non-rotating coordinate system at infinity, we define a azimuthal angle φ′ =

φ + ag2t. In the new coordinate system, the relevant electric Weyl tensor component is

given by

Ē t
t =

1

g2Ω
ḡαr ḡβrn̄rn̄rC

t
αtβ =

1

g4r4Ω5
(grr)2Ct

rtr , (4.1)

for the conformally scaled metric ḡab = Ω2gab, where we take Ω = 1/(gr).

We find that the leading order behaviour of Ct
rtr at large r is given by

Ct
rtr =

m

g2(1− a2g2) r5

(
2− 2a2g2 + 2s21 − 2a2g2s21 + 2s22 − 2a2g2s22

+3a2g2 sin2 θ + 3a2g2s21 sin
2 θ + 3a2g2s22 sin

2 θ
)
+O

( 1

r6

)
, (4.2)
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and hence we obtain

Ē t
t =

g3m

1− a2g2

(
2− 2a2g2 + 2s21 − 2a2g2s21 + 2s22 − 2a2g2s22

+3a2g2 sin2 θ + 3a2g2s21 sin
2 θ + 3a2g2s22 sin

2 θ
)
. (4.3)

The metric on the conformal boundary is given by

ds24 = −∆θ

Ξ
dt2 +

1

g2∆θ
dθ2 +

sin2 θ

g2Ξ
dφ′2 . (4.4)

Integrating over the hypersurface normal to the Killing vector field K = ∂/∂t, i.e.

1

g2Ξ

∫ 2π

0

dφ′
∫ π

0

dθ sin θ , (4.5)

we obtain the black hole mass

E =
m(1 + s21 + s22)

Ξ2
. (4.6)

This expression for the mass agrees with the one obtained in [26] by integrating the first

law of thermodynamics.

The thermodynamic quantities for this black hole were obtained in [26]. Using these,

we can derive the Euclidean action using the quantum statistical relation (1.4); it is given

by

I4 =
β

2Ξ

[
M − g2r(r2 + a2)− 4a2q1q2

r(r1r2 + a2)
− g2a2(q1 + q2)−

g2(r21r
2
2 − r4)

r

]∣∣∣
r=r+

, (4.7)

where qi = ms2i .

4.2 D = 7 gauged supergravity

The gauge group of D = 7 gauged maximal supergravity is SO(5), which has U(1)×U(1) as

its Cartan subalgebra. Rotating black holes charged under these two U(1) gauge fields, with

three equal angular momenta, were constructed in [27]. In order to achieve an asymptotic

non-rotating frame, we make a coordinate transformation ψ′ = ψ+ g
Ξ−

t (where Ξ− = 1−ag,
as defined in [27]), starting from the metric given in [27]. Furthermore, it is necessary to

scale the time coordinate according to t → Ξ t so that it matches with the canonical time

coordinate of AdS7 at infinity, as defined by (1.6). Having done this, we find that the

relevant electric component of the Weyl tensor is given by

Ē t
t =

1

g2Ω4
ḡαr ḡβrn̄rn̄rC

t
αtβ =

1

g2Ω8
grrgrr(− 1

g r2
)2Ct

rtr (4.8)
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in the conformally rescaled metric ḡab = Ω2gab where Ω = 1/(g r), with n = dΩ = − l
r2dr.

Asymptotically as r → ∞, the leading order behaviour of grr is grr ∼ g2r2, and that for

Ct
rtr is

Ct
rtr =

m

g2(1− a2g2) r8

(
12(−1 + 4a2g2 + 4a3g3 + a4g4)

−2c1c2a
2g2(−30− 16ag + 51a2g2 + 64a3g3 + 21a4g4)

+(c21 + c22)(16 − 52a2g2 − 40a3g3 + 45a4g4 + 64a5g5 + 21a6g6)
)
. (4.9)

Therefore, we have

Ē t
t =

g6m

1− a2g2

(
12(−1 + 4a2g2 + 4a3g3 + a4g4)

−2c1c2a
2g2(−30− 16ag + 51a2g2 + 64a3g3 + 21a4g4)

+(c21 + c22)(16 − 52a2g2 − 40a3g3 + 45a4g4 + 64a5g5 + 21a6g6)
)
.

The metric on the conformal boundary is given by

ds27 = − 1

Ξ
dt2 +

1

g2Ξ
dΩ2

5 (4.10)

where dΩ2
5 is the standard metric on the unit 5-sphere. Integrating over the hypersurface

normal to the Killing vector field K = ∂/∂t, we obtain the black hole mass

E =
mπ2

32Ξ4

[
(12(−1 + 4a2g2 + 4a3g3 + a4g4)

−2c1c2a
2g2(−30− 16ag + 51a2g2 + 64a3g3 + 21a4g4)

+(c21 + c22)(16 − 52a2g2 − 40a3g3 + 45a4g4 + 64a5g5 + 21a6g6)
]
. (4.11)

This agrees with the mass that was calculated in [26] by integrating the first law of ther-

modynamics.

Again, we can present an expression for the Euclidean action for this rotating seven-

dimensional black hole, by substitution of the thermodynamic quantities, which were calcu-

lated in [26], into the quantum statistical relation (1.4). The expression we obtain is rather

complicated in the general case when the two charges are unequal, and so here we shall just

present the result when the charges are set equal. We then define a charge parameter q by

setting c1 = c2 =
√

1 + q/m, and find that the Euclidean action is given by

I =
β π2

8Ξ3

(
m−g2R6

+−g2 q (4R2
+−a2)− 4gq2[gR4

+ + a2g(1 + ag)R2
+ + 2gq − a3(1 + ag)2]

R6
+ + 2qR2

+ − 2a2(1 + ag)

)
,

(4.12)

where R+ is the radius of the outer horizon.
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5 Abbott-Deser Mass for the Rotating Black Holes

5.1 The Abbott-Deser mass in gauged supergravity

In the Abbott-Deser AD construction [7], one splits the asymptotically-AdS metric gµν in

the form

gµν = ḡµν + hµν , (5.1)

where ḡµν is the AdS metric. We shall summarise the procedure here, including the ex-

tension needed for qconsidering asymptotically-AdS spacetimes as solutions of gauged su-

pergravities, where there is a scalar potential with a stationary point rather than a pure

cosmological constant.

Consider a D-dimensional theory whose bosonic Lagrangian is

L =
√−g [R − V (φ)] + Lkin , (5.2)

where φ represents the scalar fields, with potential V (φ), and Lkin denotes the kinetic

terms for the scalars and the other matter fields in the theory. We assume that V (φ) has

a stationary point at φ = 0, and that there exists a pure AdS background solution with

gµν = ḡµν and φ = 0, with all other fields vanishing too, where

R̄µν − 1
2
R̄ ḡµν +

1
2
V (0) ḡµν = 0 . (5.3)

The extension of the AD prescription involves taking the full Einstein equation,

Rµν − 1
2
Rgµν +

1
2
V (φ) gµν = Tmatter

µν , (5.4)

where Tmatter
µν represents the energy-momentum tensor for the other matter fields and the

remaining contribution from the scalars. Substituting gµν = ḡµν + hµν into (5.4), one then

separates the terms linear in hµν from the remainder, which will acquire the interpretation

of an effective energy-momentum tensor for gravity plus the other fields. The appropriate

integral involving the effective energy-momentum tensor will then yield the mass. Collecting

the terms linear in hµν on the left-hand side, we shall have

Rµν
L − 1

2
RL ḡ

µν +
1

D − 2
V (0)hµν =

1

8π
√−ḡ T

µν , (5.5)

where Rµν
L and RL denote the linearised Ricci tensor and Ricci scalar, and T µν is the

effective energy-momentum tensor density, including the contribution from gravity as well

as from the matter fields. Note that the contribution from the scalar fields on the right-hand

side is of the form

1√−ḡ T
µν
scal =

1√−ḡ T
µν
kinetic − 1

2
V (φ) gµν +

1
2
V (0) ḡµν , (5.6)
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since the effective cosmological constant 1
2
V (0) in the background AdS metric ḡµν has been

included on the left-hand side of (5.5).

As in [7], one defines

Hµν = hµν − 1
2
ḡµν hρρ ,

Kµνρσ = 1
2
(ḡµσ Hρν + ḡρν Hµσ − ḡµρHνσ − ḡνσ Hµρ) , (5.7)

where here, and in what follows, all indices are raised and lowered using the background

AdS metric ḡµν . It follows that the left-hand side in (5.5) is given by

Rµν
L − 1

2
RL ḡ

µν +
1

D − 2
V (0)hµν

= 1
2
(∇̄λ∇̄µHλν + ∇̄λ∇̄νHλµ − ¯Hµν − ∇̄α∇̄βH

αβ ḡµν)− V (0)

D − 2
Hµν ,

= ∇̄α∇̄βK
µανβ + 1

2
R̄µ

αβ
ν Hαβ − V (0)

2(D − 2)
Hµν . (5.8)

A straightforward calculation shows that the divergence of this quantity, with respect to the

background covariant derivative ∇̄µ, vanishes identically, upon the use of the background

Einstein equation (5.3).

Taking ξ̄µ∂µ = ∂/∂t as the canonically-normalised timelike Killing vector, the gener-

alised AD mass is then given by

E = − 1

8π

∮
dD−1xT tν ξ̄ν ,

=
1

8π

∮
dSiMi ,

Mi = −√−ḡ
[
ξ̄ν ∇̄µK

tiνµ −Ktjνi ∇̄j ξ̄ν

]
, (5.9)

where dSi is the area element of the spatial surface at large radius, and the t superscript

denotes a coordinate index in the time direction.3 Note that the index t denotes the time

coordinate index, Greek indices range over all spacetime directions, and Latin indices range

over the spatial directions. Eventually, one sends the radius to infinity. It should be

emphasised that one must choose a coordinate frame with respect to which the deviation

hµν of the full metric gµν from the background AdS metric ḡµν tends to zero appropriately

at infinity.

The AD definition was used recently in [22] to calculate the masses of the higher-

dimensional neutral Kerr-AdS black holes constructed in [11,12].
3The original four-dimensional Abbott-Deser construction was generalised to arbitrary spacetime dimen-

sions in [21]. We adopt the normalisation given in (5.9) for all dimensions (rather than the one chosen

in [21]), since this accords with the conventions for the definition of mass appearing in most of the earlier

literature, and, in particular, the definitions in [5].
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5.2 Rotating black hole in five-dimensional minimal gauged supergravity

We first apply the AD procedure described above to the case of the general rotating black

hole in five-dimensional minimal gauged supergravity. Note that there are no scalar fields

in the minimal gauged supergravity theory, and one has just a cosmological constant, as

give in (2.1). The calculation is a purely mechanical one, although of such a complexity

that it is most easily carried out with the aid of a computer. We find that at large distance,

the relevant integrand in the expression (5.9) for the AD mass takes the form

√−ḡ (ξ̄ν∇̄µK
trνµ −Ktjνr ∇̄j ξ̄ν) (5.10)

=−sin θ cos θ

Ξ2
aΞ

2
b

[Ξb(3m+ a2g2m+ 4abqg2)− 4(a2 − b2)g2(m+ abqg2) cos2 θ] +O
(1
r

)
.

After integration over the angular coordinates, it follows from (5.9) that the mass is given

by

E = − 1

8π

∫ 2π

0

dφ

∫ 2π

0

dψ

∫ π/2

0

dθ
√−ḡ (ξ̄ν∇̄µK

trνµ −Ktjνr ∇̄j ξ̄ν)

=
πm(2Ξa + 2Ξb − ΞaΞb) + 2πqabg2(Ξa + Ξb)

4Ξ2
aΞ

2
b

. (5.11)

This result agrees precisely with the mass obtained in [1] by integrating the first law of

thermodynamics, and that we obtained in section 2.1 by applying the AMD procedure.

5.3 AD masses for the other rotating black holes

In this subsection, we apply the AD procedure to the other examples of rotating black holes

discussed previously in this paper. We find that in the case of the other five-dimensional

black holes, and the four-dimensional black holes, the answers do not agree with the AMD

and thermodynamic results. By contrast, the mass of the seven-dimensional black hole

obtained by the AD procedure does agree with the AMD and thermodynamic calculations.

5.3.1 3-charge rotating black hole

First, we consider the five-dimensional 3-charge rotating black hole discussed in section 3.1,

with two equal charges and a third in a fixed ratio to these [2]. This solution involves

non-trivial scalar fields. In the coordinate frame used in [2], the hµν components already

fall off at large r. We find that Mi in (5.9) is given by

Mr =
m sin θ cos θ

3Ξ2
aΞ

2
b

(
Ξb(3(4 − Ξa) + (6Ξa + 12Ξb + Ξ2

a − 7ΞaΞb)s
2) (5.12)

+4 cos2 θ(Ξa − Ξb)(3 + s2(3Ξa + 3Ξb − 2ΞaΞb)
)
− 4g2m2s4 sin θ cos θ

3ΞaΞb
+O

(1
r

)
,
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which leads to the mass

E′ = E − g2m2πs4

3ΞaΞb
, (5.13)

where E is the mass found in [2] by integrating the first law, and which we reproduced in

(3.5) by using the AMD procedure.

5.3.2 Single-charge rotating black hole

Next, we consider the single-charge rotating black hole in five dimensional, whose AMD

mass we calculated in 3.2. To apply the AD procedure in this case, it is necessary first to

make the coordinate transformation

r → r(1− ms2

3r2
) , (5.14)

to ensure that hµν falls off at large distance. Then we find that

Mr =
m sin θ cos θ

3Ξ2

[
4 cos2 θ(Ξ− 1)(Ξs2 − 3(1 + s2)w) − Ξ(s2(1 + 2Ξ)− 9w(1 + s2))

]

−4g2m2s4 sin θ cos θ

3Ξ
+O

(1
r

)
. (5.15)

Thus performing the integral as in (5.9), we obtain the mass

E′ = E − g2m2πs4

3Ξ
, (5.16)

where E is the mass obtained in [2] by integrating the first law, and reproduced in (3.11)

by applying the AMD procedure.

5.3.3 3-charge black hole with equal rotation parameters

For the solution obtained in [4], which has three unequal charges and the two rotation

parameters set equal, we use the notation and conventions of section 3.1 of [26]. First, it is

necessary to redefine the radial coordinate r according to

r −→ r − m

3r

∑

i

s2i , (5.17)

in order that hµν in the decomposition (5.1) fall off at infinity. Then, we find that Mr,

defined by (5.9), is given by

Mr = 1
8
m sin θ

[
3 + a2g2 + 2

∑

i

s2i − 4
3
mg2

(∑

i

s4i −
∑

i<j

s2i s
2
j

)]
+O

(1
r

)
. (5.18)
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After performing the surface integration as in (5.9), we obtain the expresssion

E′ = E − 1
3
πm2g2

(∑

i

s4i −
∑

i<j

s2i s
2
j

)
(5.19)

for the AD mass, where E is the mass obtained in [26] by integrating the first law, and that

we reproduced in this paper using the AMD procedure in (3.15).

5.3.4 Four-dimensional black hole

To apply the AD procedure to calculate the mass for the four-dimensional gauged supergrav-

ity black holes discussed in section 4.1, we first need to make the coordinate transformation

r → r −m(s21 + s22) +
m2(s21 − s22)

2

2r
, (5.20)

in order to ensure that hµν falls off at large distance. We then find

Mr =
m2g2(s21 − s22)

2r sin θ

1− a2g2
+
m(1 + s21 + s22)[−2 + a2g2(−1 + 3 cos2 θ)] sin θ

(1− a2g2)2
+O

(1
r

)
,

(5.21)

which actually diverges as r is sent to infinity.

5.3.5 Seven-dimensional black hole

The implementation of the AD procedure for calculating the mass of the seven-dimensional

gauged supergravity black holes that we discussed in section 4.2 is rather straightforward. In

the coordinate frame we are using, the components hµν already tend to zero at large distance.

We then find that the AD mass calculated from (5.9) agrees precisely with the expression

(4.11) which was obtained in [26]) by integrating the first law, and that we reproduced in

this paper by applying the AMD procedure. (We have also checked the AD calculation

of the mass for the non-rotating black hole in six-dimensional gauged supergravity found

in [28], and found that it agrees with the mass calculated using the AMD method.)

In the following subsection, we shall discuss in more detail the problems we encountered

above in calculating the AD masses of the five and four-dimensional black hole examples.

Before moving on to this, it is perhaps worth pointing out that in the four cases where we

have encountered difficulties in determining the mass by the AD procedure, summarised by

equations (5.13), (5.16), (5.19) and (5.21), one gets the correct answer if follows the “rule

of thumb” of retaining only the terms linear in the mass or charge, and discarding terms of

higher order in the mass or charge.
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5.4 Subtleties in the AD procedure

It has been remarked upon previously in the literature that the background-subtraction

prescription inherent in the AD definition of the mass can lead to ambiguities associated

with coordinate reparameterisations of the metric and the background. (See, for exam-

ple, [14, 29].) On the other hand, it has been applied successfully to calculate the masses

of the rotating AdS black holes in arbitrary dimension [22], and we have applied it suc-

cessfully in this paper in the case of the five-dimensional charged rotating black holes of

five-dimensional minimal gauged supergravity, and charged solutions of seven-dimensional

gauged supergravity. All the cases that we tried where it failed involve solutions with

non-trivial scalar fields, and as we shall discuss below, these scalar fields can have a quite

significant contribution in the calculation of the energy. Although the seven-dimensional

black holes, for which we obtained the correct mass by the AD approach, also involve non-

trivial scalars, we find that in this case the scalars make a less significant contribution to

the energy, in a way that we shall elaborate on below.

It might be natural to suppose that the difficulties we have encountered are ultimately

related to some ambiguities in the decomposition of the metric into AdS background plus

deviations, and that these ambiguities become more acute in the cases where the scalar

fields play a rôle.

5.4.1 Scalar fields and the AD mass formula

Although we successfully applied the AD procedure above to calculate the mass of the

rotating black hole in five-dimensional minimal gauged supergravity, we find that in more

complicated situations we encounter problems in extracting results by using the AD method.

In fact the difficulties can already be illustrated if we consider the example of 3-charge non-

rotating black holes in five-dimensional maximal gauged supergravity, for which the relevant

bosonic Lagrangian is given by (3.1).

The 3-charge non-rotating black hole in five-dimensional gauged supergravity is given

by [30]

ds2 = −(H1H2H3)
−2/3 f dt2 + (H1H2H3)

1/3
(dr2
f

+ r2dΩ2
3

)
,

Xi = H−1
i (H1H2H3)

1/3 , Ai = (1−H−1
i ) coth δi dt , (5.22)

where

f = 1− 2m

r2
+ g2r2H1H2H3 , Hi = 1 +

2m sinh2 δi
r2

. (5.23)
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The mass of the black hole is given by [30]

E =
πm

4

(
3 + 2

∑

i

s2i

)
, (5.24)

where si ≡ sinh δi.

In the AD calculation of the mass, the background AdS metric satisfying (5.3) is most

easily obtained by setting the mass parameter m and charge parameters δi to zero in (5.22).

However, in the coordinate frame used in (5.22), one finds that the components of hµν

defined by (5.1) do not fall off at large r. This can be remedied by performing the coordinate

transformation r → ρ, where

r2 = ρ2 − 2
3
m (s21 + s22 + s23) . (5.25)

Substituting into (5.9), we find that at large ρ, the integral gives the expression

E′ = − 1

8π

∮
dΣi

√−ḡ
[
(ξ̄ν∇̄µK

tiνµ −Ktjνi ∇̄j ξ̄ν

]

=
πm

4

(
3 + 2

∑

i

s2i

)
− 1

3
g2m2(s41 + s42 + s43 − s21s

2
2 − s22s

2
3 − s23s

2
1) . (5.26)

This disagrees with the standard result (5.24), unless one sets the three charges equal.

The disagreement appears to be associated with the presence of the non-trivial scalar

fields. In fact, if we calculate the contribution of potential energy term in (5.6) for this

solution, we find that this contributes

− 1

8π
√−ḡ T

tν
pot ξ̄ν =

g2m2

48π ρ

∑

i<j

(s2i − s2j)
2 sin θ cos θ +O(1/ρ3) (5.27)

to the energy density. When integrated over the spatial 4-volume, this would give rise to

a logarithmic divergence at large distance. In fact the scalar kinetic terms contribute an

equal and opposite divergence,

− 1

8π
√−ḡ T

tν
kinetic ξ̄ν = −g

2m2

48π ρ

∑

i<j

(s2i − s2j )
2 sin θ cos θ +O(1/ρ3) (5.28)

(Of course it is the (∂φ)2 gµν term, and not the ∂µφ∂νφ term in the scalar energy-momentum

tensor that contributes here, since the solution is time-independent.) Although the scalar

energy density therefore integrates to a finite total, it is possibly significant that the potential

and kinetic energies are separately divergent.

By contrast, if we calculate the analogous scalar energy contributions in the case of

2-charge black holes in seven-dimensional gauged supergravity (see, for example, [31] for
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details of these solutions), we find that both the potential and kinetic energy densities inte-

grate to give separately finite energy contributions. Significantly, we find in this case that

(as also for the rotating seven-dimensional black holes discussed in section 5.3.5) the AD

calculation of the mass agrees with the thermodynamic calculation and the AMD calcula-

tion.

The situation is even more striking in four dimensions. Let us consider the non-rotating

4-charge black holes of maximal gauged supergravity [32, 33], in the notation given in [31]

(but with the gauge coupling rescaled according to g → g/2, so that 1/g = l, the AdS

radius). Again, we perform a radial coordinate redefinition,

r = ρ− 1
2
m

∑

i

s2i +
m2

3ρ

∑

i<j

(s2i − s2j)
2 , (5.29)

so that the components hµν fall off at large distance. We find that the scalar potential

energy and kinetic energy both diverge (with linear and logarithmic divergences at large

distance), but now, the total scalar energy also diverges (with a linear, but no logarithmic,

divergence):

− 1

8π
√−ḡ T

tν
pot ξ̄ν = − 1

4πg
2m2

∑

i<j

(s2i − s2j)
2 sin θ

+
3g2m3(s21 + s22 − s23 − s24)(s

2
1 − s22 + s23 − s24)(s

2
1 − s22 − s23 + s24)

4π ρ
sin θ +O(1/ρ2) ,

− 1

8π
√−ḡ T

tν
kinetic ξ̄ν = 1

8πg
2m2

∑

i<j

(s2i − s2j)
2 sin θ (5.30)

−3g2m3(s21 + s22 − s23 − s24)(s
2
1 − s22 + s23 − s24)(s

2
1 − s22 − s23 + s24)

4π ρ
sin θ +O(1/ρ2) .

To conclude this section, we shall consider two possible options for modifying the AD

prescription, so as to obtain the proper expressions for the mass in the presence of scalar

fields. In fact, both have featured in earlier discussions in the literature.

Option A:

The divergence in the volume integral for the total energy of the scalar fields in four

dimensions can in fact be removed, if one makes an integration by parts in the kinetic energy

contribution for each scalar, of the form

− 1

8π

∫

V
d3xT tν

kinetic ξ̄ν =
1

32π

∫

V

√−ḡ (∂φ)2 d3x

= − 1

32π

∫

V

√−ḡ φ ¯φd3x+
1

32π

∫

V
∂µ(

√−ḡ φ∂µφ) d3x

= − 1

32π

∫

V

√−ḡ φ ¯φd3x+
1

32π

∮

∂V
dSi

√−ḡ φ∂iφ , (5.31)
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and then uses −φ ¯φ rather than (∂φ)2 in the definition of the bulk energy-momentum

tensor for each scalar field. This suggests therefore that one could define a “corrected” AD

mass in situations where there are scalar fields, in which one adds an extra scalar boundary

term to the expression given in (5.9), so that

E =
1

8π

∮
dSi(Mi +N i) , (5.32)

where Mi is still as given in (5.9), and the extra term N i is given by

N i = −1
4

√−ḡ ḡij GIJ(φ)φ
I ∂jφ

J . (5.33)

Note that here, we are allowing for the general situation of scalar fields φI with a non-linear

sigma-model kinetic Lagrangian given by

Lkinetic = −1
2
GIJ(φ) ∂µφ

I ∂µφJ . (5.34)

Remarkably, we find that with the inclusion of the N i term in the AD formula, we now

obtain the correct results for the mass of the 3-charge black holes (5.22) in five dimensions,

and also for the rotating black holes in five dimensions that were described in sections 5.3.1,

5.3.2 and 5.3.3, and for the rotating black holes that were described in section 5.3.4, where we

previously obtained incorrect masses using the AD prescription. It also leaves unaffected

the already-correct result in seven dimensions. In fact we have only found one example

where (5.32) with (5.33) fails to give the correct result for the mass, and that, ironically

enough, is the very example that we used for motivating the introduction of the correction

term, namely the four-dimensional non-rotating black hole with 4 unequal charges. (If the

charges are set pairwise equal, which corresponds to the non-rotating limit of the rotating

black-hole solution of [25], then (5.32) gives the correct mass.)

The extra term involving N i that we have added to the AD calculation of the mass

is strikingly similar to the surface term introduced by Hertog, Horowitz and Maeda in a

discussion of negative-energy solutions in five-dimensional maximal gauged supergravity

[34]. There, a surface term of the form
∮
dSµ φ∂

µφ was added to the action for a scalar

field φ, leading to a corresponding correction to the Hamiltonian and hence to the mass.4

Option B:

A detailed discussion of the definition of mass in asymptotically AdS backgrounds with

scalar fields has been given in [35, 36]. The focus in these papers was on cases where the

4We thank Gary Gibbons for drawing our attention to [34] after this paper was completed.
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scalars have masses that saturate the Breitenlöhner-Freedman stability bound, namely

m2 = −(D − 1)2

4l2
(5.35)

in D dimensions. The reason for considering these limiting cases was that the possibility

then arises of a less rapid fall-off for the scalar fields fields, with a logarithmic dependence

on the asymptotic radial coordinate. However, even in the absence of this logarithmic

behaviour, it was shown in [35, 36] that the scalar fields can provide a contribution to

the total energy, if one makes a decomposition of the full metric as in (5.1). Translated

into the notation that we are using in this paper, we find that the scalar surface-integral

modifications of the type considered in [36] can be expressed as a different modification of

the AD mass formula (5.9), analogous to the modification in (5.32), except that now we

have

E =
1

8π

∮
dSi(Mi + Ñ i) , (5.36)

with Ñ i given by

Ñ r =

√−ḡ r
4(D − 1)

(
φI φJ

∂2V (0)

∂φI ∂φJ
+ GIJ(φ) g

ij ∂iφ
I ∂jφ

J
)
. (5.37)

Note that the first term in the large parentheses is just the contribution of the squared

masses of the scalar fields, since a scalar field φ has mass squared given by

m2 = −∂
2V (0)

∂φ2
. (5.38)

A more compact way to write the correction term in this AD mass formula is

Ñ r = − r

D − 1
(Tscal)

t
t , (5.39)

where T µν
scal is the effective energy-momentum tensor density for the scalar fields, as defined

in equation (5.6).

We find that using this modification, the AD mass formula (5.36) with (5.37) or (5.39)

then gives expressions that agree in all cases with those that we obtained by using the AMD

mass formula. This includes not only all the rotating black-hole solutions, but also the non-

rotating four-dimensional solution with four unequal charges, for which a discrepancy still

remained if we used the modification (5.32) with (5.33).

It is worth recording that except in five fimensions, the scalar fields participating in

the black-hole solutions in the various gauged supergravities that we have been consider-

ing have (mass)2 values that exceed the Breitenlöhner-Freedman bound. Specifically, the

relevant scalars arising in the theories in D = 4, 5, 6 and 7 have m2 = (−2,−4,−6,−8)l−2,
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which can be contrasted with the corresponding Breitenlöhner-Freedman masses m2 =

(−9/4,−4,−25/4,−9)l−2 . Of course in all cases, the scalar fields we are using have ap-

parent mass terms that imply “masslessness” in the appropriate sense of being members of

massless supermultiplets.

Finally, it should be emphasised that if instead we use the AMD procedure to calculate

the masses for the general non-rotating black holes in five, seven, six and four dimensions,

and the various known rotating black holes, we always get the correct mass without the

need for including any scalar modification terms. In other words, the AMD procedure yields

the correct results for the masses by making reference only to the metric.

6 Discussion and Conclusions

In this paper, we have principally been concerned with calculating the masses of the vari-

ous recently-discovered rotating black hole solutions in gauged supergravities in five, four

and seven dimensions. Until now, the masses for the examples we have considered in this

paper had been calculated only by integrating the first law of thermodynamics. This has

proved to be a reliable and straightforward procedure for calculating the mass, which avoids

some of the ambiguities inherent in certain other approaches. On the other hand, the ther-

modynamic calculation is somewhat indirect, and does not emphasise the explicit relation

between the energy and a conservation law. For this reason, it is of considerable interest to

perform alternative calculations of the masses of the rotating black holes, that more directly

relate the answer to conservation laws.

We have focused on two such approaches in this paper, each of which comes with its

attendant advantages and disadvantages. We first considered the Ashtekar-Magnon-Das

procedure for calculating the mass of an asymptotically AdS spacetime. The AMD proce-

dure involves integrating a certain electric component of the Weyl tensor over the spatial

section of the compactified conformal boundary. It is inherently well-defined, without the

need for any subtraction, since the Weyl tensor falls off suitably rapidly at large distance as

the metric approaches AdS spacetime. The calculation is insensitive to coordinate choices,

and we have encountered no ambiguities at all when calculating the masses for the various

rotating black holes in gauged supergravities that are known. Furthermore, the masses that

we have calculated using the AMD prescription agree with the those obtained previously

by integrating the first law of thermodynamics.

The only difficulties that one encounters when following the AMD procedure are of a
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purely calculational nature, in that one has to evaluate a certain component of the Weyl

tensor of the full black-hole metric (at least to leading order in an expansion in powers of

the inverse distance). By contrast, the Abbott-Deser approach would be computationally

somewhat simpler, since one need only take first derivatives of the deviation hµν and the

timelike Killing vector, and furthermore the derivatives are covariant just with respect to

the background AdS metric. In practice the calculations for rotating asymptotically AdS

black holes are sufficiently complicated that in either approach it is highly advantageous to

use a computer, and so the greater complexity of the AMD approach does not necessarily

represent a severe obstacle.

In certain cases the AD approach is relatively easy to implement, for example in the

uncharged rotating AdS metrics as discussed in [22], and in the general charged rotating

solutions of five-dimensional minimal gauged supergravity, which we analysed in section 5.2.

The idea is to write the asymptotically AdS metric gµν as the sum of a background AdS

metric ḡµν plus deviation terms hµν , and work in a frame where hµν falls of appropriately

at infinity. However, we encountered difficulties when trying to apply the AD procedure

to the five and four-dimensional rotating black hole solutions in which scalar fields play a

non-trivial rôle. We considered two ways to modify the original AD definition of the mass,

to incorporate the effects of the scalar fields. One of these, given by (5.32) with (5.33), is

related to a modification introduced in [34]. We found that it then led to agreement with the

AMD and thermodynamic masses for all the known rotating AdS black-holes solutions, but

a discrepancy remained in the case of four-dimensional AdS black holes with four unequal

charges. We then considered a different modification to the AD mass formula, generalising

one introduced in [36], and we found that this, given by (5.36) with (5.37) or (5.39), led

to agreement with the AMD and thermodynamic masses for all the black hole examples,

including the four-dimensional black hole with four unequal charges.

Since the AMD approach gives reliable results for the masses of all the black holes, which

agree with the thermodynamic calculations without the need for any scalar modifications, it

would seem to be a more “robust” prescription than the AD approach. It yields expressions

for the masses by making reference only to the metric iteslf, and not to the scalar fields.

Furthermore, the AMD approach does not involve the potentially hazardous process of

decomposing the black hole metric as a deviation hµν from a background AdS metric ḡµν .

The hazards of this decomposition are highlighted in the example of the non-rotating four-

dimensional gauged supergravity black hole with four unequal charges, where the integral of

the background-subtracted scalar energy density is actually divergent at large distance. This
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raises questions about the validity of the assumption that the deviation hµν is sufficiently

small asymptotically. More generally, the whole question of how one should split the solution

into background plus deviation in the AD approach is somewhat unclear, and the results

might be affected by choices of field variable or coordinate reparameterisations beyond those

that we have considered.

There are other methods that have also been used in order to calculate the mass of

asymptotically AdS spacetimes. For example, as we mentioned in the introduction, one

could use a Komar integral, although there are complications associated with the need to

regularise the divergent result by performing a background AdS subtraction. (However,

see [37] for a recent discussion of this approach, and its relation to the AMD method.)

Another approach to calculating the mass of asymptotically AdS spacetimes is via the

holographic stress tensor, introduced in the context of the AdS/CFT correspondence in

string theory [38–43]. As was shown in [43] for the uncharged rotating AdS black holes, this

yields bulk masses that are in agreement with those obtained previously from the integration

of the first law and from the AMD approach. It also yields Casimir contributions, which are

not relevant in a classical discussion of the energy of a black hole, but which do play a rôle in

the AdS/CFT correspondence and the map to the boundary theory. As was demonstrated

explicitly in [44], for the most natural choice of conformal boundary metric the Casimir

energy is a pure constant, independent of the parameters of the black hole, and thus its

inclusion need not complicate the discussion of the thermodynamics.

Finally, we also carried out a check of the consistency of the quantum statistical relation

(1.4) for the general charged rotating black holes in minimal five-dimensional gauged su-

pergravity. This involved calculating the Euclidean action for the solution, and comparing

it with the thermodynamic potential. This calculation also is rather subject to subtraction

ambiguities, since one has to subtract the action of a pure AdS spacetime with the same

boundary as that of the black-hole metric in order to obtain a finite Euclidean action. We

did not carry through this procedure for the other, more complicated, examples of charged

rotating black holes, leaving this for future investigation.
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