102 research outputs found

    Pharmacological inhibition of c-Abl compromises genetic stability and DNA repair in Bcr-Abl-negative cells

    Get PDF
    Imatinib inhibits the kinase activity of Bcr-Abl and is currently the most effective drug for treatment of chronic myeloid leukemia (CML). Imatinib also blocks c-Abl, a physiological tyrosine kinase activated by a variety of stress signals including damaged DNA. We investigated the effect of pharmacological inhibition of c-Abl on the processing of irradiation-induced DNA damage in Bcr-Abl-negative cells. Cell lines and peripheral blood mononuclear cells (PBMCs) from healthy volunteers were treated with imatinib or dasatinib before gamma-irradiation. Inhibition of c-Abl caused an enhanced irradiation-induced mutation frequency and slowdown of DNA repair, whereas imatinib was ineffective in cells expressing a T315I variant of c-Abl. Mutation frequency and repair kinetics were also studied in c-Abl-/- murine embryonic fibroblasts (MEFs) retransfected with wild-type c-Abl (wt-Abl) or a kinase-defect variant of Abl (KD-Abl). Enhanced mutation frequency as well as delayed DNA repair was observed in cells expressing KD-Abl. These data indicate that pharmacological inhibition of c-Abl compromises DNA-damage response

    Human Monoclonal Antibodies Neutralizing Cytomegalovirus (CMV) for Prophylaxis of CMV Disease: Report of a Phase I Trial in Bone Marrow Transplant Recipients

    Get PDF
    The safety and pharmacokinetics of the two neutralizing human IgG1 monoclonal antibodies to cytomegalovirus (CMV) SDZ89-104 and 89-109 in bonemarrowtransplant (BM1)recipients was assessed in an open phase I trial. Thirteen patients, 8 seropositive and 5 seronegative for CMV, were treated with allogeneic or autologous bone marrow transplantation. SDZ 89-104 was given to 5 and SDZ 89-109 to 8 patients. Patients were divided into high-and low-dose groups. A fixed prestudy dose of 0.1 mg/kg was given 4 days before BMT. On days 3, 17, 31,45, 59, and 73, patients were treated with either 0.5 or 2 mg/kg of the respective antibody. Results indicate that doses of 2 mg/kg of SDZ 89-104 or SDZ 89-109 in alternating weeks can be safely administered to BMT patients. Serum trough levels measured by antiidiotype ELISA were ∼10 µg/ml after administration of 0.5 mg/kg and ∼50 µg/ml after treatment with 2 mg/kg of SDZ 89-104 or SDZ 89-109. High serum levels defined by antiidiotype ELISA techniques closely paralleled increased neutralizing activity. Serum half-lives calculatedfrom these data were ∼6 day

    Highly variable response to cytotoxic chemotherapy in carcinoma-associated fibroblasts (CAFs) from lung and breast

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carcinoma-associated fibroblasts (CAFs) can promote carcinogenesis and tumor progression. Only limited data on the response of CAFs to chemotherapy and their potential impact on therapy outcome are available. This study was undertaken to analyze the influence of chemotherapy on carcinoma-associated fibroblasts (CAFs) <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>The <it>in vivo </it>response of stromal cells to chemotherapy was investigated in 22 neoadjuvant treated breast tumors on tissue sections before and after chemotherapy. Response to chemotherapy was analyzed <it>in vitro </it>in primary cultures of isolated CAFs from 28 human lung and 9 breast cancer tissues. The response was correlated to <it>Mdm2</it>, <it>ERCC1 </it>and <it>TP53 </it>polymorphisms and <it>TP53 </it>mutation status. Additionally, the cytotoxic effects were evaluated in an <it>ex vivo </it>experiment using cultured tissue slices from 16 lung and 17 breast cancer specimens.</p> <p>Results</p> <p>Nine of 22 tumors showed a therapy-dependent reduction of stromal activity. Pathological response of tumor or stroma cells did not correlate with clinical response. Isolated CAFs showed little sensitivity to paclitaxel. In contrast, sensitivity of CAFs to cisplatinum was highly variable with a GI50 ranging from 2.8 to 29.0 μM which is comparable to the range observed in tumor cell lines. No somatic <it>TP53 </it>mutation was detected in any of the 28 CAFs from lung cancer tissue. In addition, response to cisplatinum was not significantly associated with the genotype of <it>TP53 </it>nor <it>Mdm2 </it>and <it>ERCC1 </it>polymorphisms. However, we observed a non-significant trend towards decreased sensitivity in the presence of <it>TP53 </it>variant genotype. In contrast to the results obtained in isolated cell culture, in tissue slice culture breast cancer CAFs responded to paclitaxel within their microenvironment in the majority of cases (9/14). The opposite was observed in lung cancer tissues: only few CAFs were sensitive to cisplatinum within their microenvironment (2/15) whereas a higher proportion responded to cisplatinum in isolated culture.</p> <p>Conclusion</p> <p>Similar to cancer cells, CAF response to chemotherapy is highly variable. Beside significant individual/intrinsic differences the sensitivity of CAFs seems to depend also on the cancer type as well as the microenvironment.</p

    A Potential Role for Shed Soluble Major Histocompatibility Class I Molecules as Modulators of Neurite Outgrowth

    Get PDF
    The neurobiological activities of classical major histocompatibility class I (MHCI) molecules are just beginning to be explored. To further examine MHCI's actions during the formation of neuronal connections, we cultured embryonic mouse retina explants a short distance from wildtype thalamic explants, or thalami from transgenic mice (termed “NSE-Db”) whose neurons express higher levels of MHCI. While retina neurites extended to form connections with wildtype thalami, we were surprised to find that retina neurite outgrowth was very stunted in regions proximal to NSE-Db thalamic explants, suggesting that a diffusible factor from these thalami inhibited retina neurite outgrowth. It has been long known that MHCI-expressing cells release soluble forms of MHCI (sMHCI) due to the shedding of intact MHCI molecules, as well as the alternative exon splicing of its heavy chain or the action proteases which cleave off it's transmembrane anchor. We show that the diffusible inhibitory factor from the NSE-Db thalami is sMHCI. We also show that COS cells programmed to express murine MHCI release sMHCI that inhibits neurite outgrowth from nearby neurons in vitro. The neuroinhibitory effect of sMHCI could be blocked by lowering cAMP levels, suggesting that the neuronal MHCI receptor's signaling mechanism involves a cyclic nucleotide-dependent pathway. Our results suggest that MHCI may not only have neurobiological activity in its membrane-bound form, it may also influence local neurons as a soluble molecule. We discuss the involvement of complement proteins in generating sMHCI and new theoretical models of MHCI's biological activities in the nervous system

    Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice.</p> <p>Methods</p> <p>HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr<sup>51</sup>-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines.</p> <p>Results</p> <p>In melanoma-bearing mice, cisplatin (4 mg/kg B.W.) reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p < 0.1) and weight (p < 0.1). HemoHIM itself did not inhibit melanoma cell growth <it>in vitro</it>, and did not disturb the effects of cisplatin <it>in vitro</it>. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-γ secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction.</p> <p>Conclusion</p> <p>HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.</p

    Oncogenic Stress Induced by Acute Hyper-Activation of Bcr-Abl Leads to Cell Death upon Induction of Excessive Aerobic Glycolysis

    Get PDF
    In response to deregulated oncogene activation, mammalian cells activate disposal programs such as programmed cell death. To investigate the mechanisms behind this oncogenic stress response we used Bcr-Abl over-expressing cells cultivated in presence of imatinib. Imatinib deprivation led to rapid induction of Bcr-Abl activity and over-stimulation of PI3K/Akt-, Ras/MAPK-, and JAK/STAT pathways. This resulted in a delayed necrosis-like cell death starting not before 48 hours after imatinib withdrawal. Cell death was preceded by enhanced glycolysis, glutaminolysis, and amino acid metabolism leading to elevated ATP and protein levels. This enhanced metabolism could be linked to induction of cell death as inhibition of glycolysis or glutaminolysis was sufficient to sustain cell viability. Therefore, these data provide first evidence that metabolic changes induced by Bcr-Abl hyper-activation are important mediators of oncogenic stress-induced cell death

    Characteristics and outcome of patients with low-/intermediate-risk acute promyelocytic leukemia treated with arsenic trioxide - an international collaborative study

    Get PDF
    The aim of this study was to characterize a large series of 154 patients with acute promyelocytic leukemia (APL; median age, 53 years; range, 18-90 years) and evaluate real-life outcome after up-front treatment with arsenic trioxide (ATO) and alltrans retinoic acid (ATRA). All patients were included in the prospective NAPOLEON registry (NCT02192619) between 2013 and 2019. APL was de novo in 91% (n=140) and therapy-related in 9% (n=14); 13% (n=20) were older than 70 years. At diagnosis bleeding/hemorrhage was present in 38% and thrombosis in 3%. Complete remission was achieved in 152 patients (99%), whereas two patients (1%) experienced induction death within 18 days after start of therapy. With a median follow-up of 1.99 years (95%-CI, 1.61-2.30 years) 1-year and 2-years overall survival (OS) rates were 97% (95%-CI, 94-100%) and 95% (95%-CI, 91-99%), respectively. Age above 70 years was associated with a significantly shorter OS (P<0.001) as compared to younger patients. So far no relapses were observed. Six patients (4%) died in CR after in median 0.95 years after diagnosis (range, 0.18-2.38 years). Our data confirm the efficiency and durability of ATO/ATRA in the primary management of adult low-/ intermediate-risk APL patients in the real life setting, irrespective of age
    corecore