92 research outputs found

    Optical Low Resolution Spectroscopic Observations of T Pyx during the Early Phase of 2011 Outburst

    Get PDF
    We report on the results of our low resolution spectroscopic observations during the 2011 outburst of the recurrent nova T Pyx. Our observations were performed from 0.19 days to 34 days after the eruption discovered by M. Linnolt. We found Wolf-Rayet like features in our spectrum during the initial rising phase on t = 0.19 d. Following spectral developments are consistent with previous works. We discuss that the early phase of T Pyx is divided into three stages, a short lived WR-like stage, He/N stage and Fe II stage

    Large Polarization Degree of Comet 2P/Encke Continuum Based on Spectropolarimetric Signals During Its 2017 Apparition

    Full text link
    Spectropolarimetry is a powerful technique for investigating the physical properties of gas and solid materials in cometary comae without mutual contamination, but there have been few spectropolarimetric studies to extract each component. We attempt to derive the continuum polarization degree of comet 2P/Encke, free from influence of molecular emissions. The target is unique in that it has an orbit dynamically decoupled from Jupiter like main-belt asteroids, while ejecting gas and dust like ordinary comets. We observed the comet using the Higashi-Hiroshima Optical and Near-Infrared Camera attached to the Cassegrain focus of the 150-cm Kanata telescope on UT 2017 February 21 when the comet was at the solar phase angle of 75.7 deg. We find that the continuum polarization degree with respect to the scattering plane is 33.8+/-2.7 % at the effective wavelength of 0.815 um, which is significantly higher than those of cometary dust in a high-Pmax group at similar phase angles. Assuming that an ensemble polarimetric response of 2P/Encke's dust as a function of phase angle is morphologically similar with those of other comets, its maximum polarization degree is estimated to > 40 % at the phase angle of ~100 deg. In addition, we obtain the polarization degrees of the C2 swan bands (0.51-0.56 um), the NH2 alpha bands (0.62-0.69 um) and the CN-red system (0.78-0.94 um) in a range of 3-19 %, which depend on the molecular species and rotational quantum numbers of each branch. The polarization vector aligns nearly perpendicularly to the scattering plane with the average of 0.4 deg over a wavelength range of 0.50-0.97 um. From the observational evidence, we conjecture that the large polarization degree of 2P/Encke would be attributable to a dominance of large dust particles around the nucleus, which have remained after frequent perihelion passages near the Sun.Comment: 9 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    Characterizing Universal Reconfigurability of Modular Pivoting Robots

    Get PDF
    We give both efficient algorithms and hardness results for reconfiguring between two connected configurations of modules in the hexagonal grid. The reconfiguration moves that we consider are "pivots", where a hexagonal module rotates around a vertex shared with another module. Following prior work on modular robots, we define two natural sets of hexagon pivoting moves of increasing power: restricted and monkey moves. When we allow both moves, we present the first universal reconfiguration algorithm, which transforms between any two connected configurations using O(n3)O(n^3) monkey moves. This result strongly contrasts the analogous problem for squares, where there are rigid examples that do not have a single pivoting move preserving connectivity. On the other hand, if we only allow restricted moves, we prove that the reconfiguration problem becomes PSPACE-complete. Moreover, we show that, in contrast to hexagons, the reconfiguration problem for pivoting squares is PSPACE-complete regardless of the set of pivoting moves allowed. In the process, we strengthen the reduction framework of Demaine et al. [FUN'18] that we consider of independent interest

    Spectropolarimetry of R Coronae Borealis in 1998--2003: Discovery of Transient Polarization at Maximum Brightness

    Full text link
    We present an extended optical spectropolarimetry of R CrB from 1998 January to 2003 September. The polarization was almost constant in the phase of maximum brightness, being consistent with past observations. We detected, however, temporal changes of polarization (0.5\sim 0.5 %) in 2001 March and August, which were the first detection of large polarization variability in R CrB near maximum brightness. The amplitude and the position angle of the `transient polarization' were almost constant with wavelength in both two events. There was a difference by about 20 degrees in the position angle between the two events. Each event could be explained by light scattering due to short-lived dust puff occasionally ejected off the line of sight. The flatness of the polarization against the wavelength suggests that the scatterer is a mixture of dust grains having various sizes. The rapid growth and fading of the transient polarization favors the phenomenological model of dust formation near the stellar photosphere (e.g., within two stellar radii) proposed for the time evolution of brightness and chromospheric emission lines during deeply declining periods, although the fading timescale can hardly be explained by a simple dispersal of expanding dust puff with a velocity of 200350\sim 200-350 km s 1^{-1}. Higher expansion velocity or some mechanism to destroy the dust grains should be needed.Comment: 22 pages, 10 figures, accepted for publication in A

    Multifrequency Photo-polarimetric WEBT Observation Campaign on the Blazar S5 0716+714: Source Microvariability and Search for Characteristic Timescales

    Get PDF
    Here we report on the results of the WEBT photo-polarimetric campaign targeting the blazar S5~0716+71, organized in March 2014 to monitor the source simultaneously in BVRI and near IR filters. The campaign resulted in an unprecedented dataset spanning 110\sim 110\,h of nearly continuous, multi-band observations, including two sets of densely sampled polarimetric data mainly in R filter. During the campaign, the source displayed pronounced variability with peak-to-peak variations of about 30%30\% and "bluer-when-brighter" spectral evolution, consisting of a day-timescale modulation with superimposed hourlong microflares characterized by 0.1\sim 0.1\,mag flux changes. We performed an in-depth search for quasi-periodicities in the source light curve; hints for the presence of oscillations on timescales of 3\sim 3\,h and 5\sim 5\,h do not represent highly significant departures from a pure red-noise power spectrum. We observed that, at a certain configuration of the optical polarization angle relative to the positional angle of the innermost radio jet in the source, changes in the polarization degree led the total flux variability by about 2\,h; meanwhile, when the relative configuration of the polarization and jet angles altered, no such lag could be noted. The microflaring events, when analyzed as separate pulse emission components, were found to be characterized by a very high polarization degree (>30%> 30\%) and polarization angles which differed substantially from the polarization angle of the underlying background component, or from the radio jet positional angle. We discuss the results in the general context of blazar emission and energy dissipation models.Comment: 16 pages, 17 Figures; ApJ accepte

    DISCOVERY OF DRAMATIC OPTICAL VARIABILITY IN SDSS J1100+4421: A PECULIAR RADIO-LOUD NARROW-LINE SEYFERT 1 GALAXY?

    Get PDF
    We present our discovery of dramatic variability in SDSS J1100+4421 by the high-cadence transient survey Kiso Supernova Survey (KISS). The source brightened in the optical by at least a factor of three within about half a day. Spectroscopic observations suggest that this object is likely a narrow-line Seyfert 1 galaxy (NLS1) at z=0.840, however with unusually strong narrow emission lines. The estimated black hole mass of ~ 10^7 Msun implies bolometric nuclear luminosity close to the Eddington limit. SDSS J1100+4421 is also extremely radio-loud, with a radio loudness parameter of R ~ 4 x 10^2 - 3 x 10^3, which implies the presence of relativistic jets. Rapid and large-amplitude optical variability of the target, reminiscent of that found in a few radio- and gamma-ray loud NLS1s, is therefore produced most likely in a blazar-like core. The 1.4 GHz radio image of the source shows an extended structure with a linear size of about 100 kpc. If SDSS J1100+4421 is a genuine NLS1, as suggested here, this radio structure would then be the largest ever discovered in this type of active galaxie
    corecore