102 research outputs found
Strong grain neighbour effects in polycrystals
Anisotropy in single crystal properties of polycrystals controls both the overall response of the aggregates and patterning of local stress/strain distributions, the extremes of which govern failure processes. Improving the understanding of grain-grain interactions has important consequences for in-service performance limits. Three-dimensional synchrotron X-ray diffraction was used to study the evolution of grain resolved stresses over many contiguous grains in Zr and Ti polycrystals deformed in situ. In a significant fraction of grains the stress along the loading axis was found to decrease during tensile plastic flow just beyond the macroscopic yield point; this is in the absence of deformation twinning and is a surprising behaviour. It is shown that this phenomenon is controlled by the crystallographic orientation of the grain and its immediate neighbours, particularly those adjacent along the loading axis
Low secondary electron yield engineered surface for electron cloud mitigation
Secondary electron yield (SEY or δ) limits the performance of a number of devices. Particularly, in high-energy charged particle accelerators, the beam-induced electron multipacting is one of the main sources of electron cloud (e-cloud) build up on the beam path; in radio frequency wave guides, the electron multipacting limits their lifetime and causes power loss; and in detectors, the secondary electrons define the signal background and reduce the sensitivity. The best solution would be a material with a low SEY coating and for many applications δ < 1 would be sufficient. We report on an alternative surface preparation to the ones that are currently advocated. Three commonly used materials in accelerator vacuum chambers (stainless steel, copper, and aluminium) were laser processed to create a highly regular surface topography. It is shown that this treatment reduces the SEY of the copper, aluminium, and stainless steel from δmax of 1.90, 2.55, and 2.25 to 1.12, 1.45, and 1.12, respectively. The δmax further reduced to 0.76-0.78 for all three treated metals after bombardment with 500 eV electrons to a dose between 3.5 × 10-3 and 2.0 × 10-2 C·mm-2
RF Characterisation of Laser Treated Copper Surfaces for the Mitigation of Electron Cloud in Accelerators
In accelerator beam chambers and RF waveguides, electron cloud and multipacting can be mitigated effectively by reducing the secondary electron yield (SEY). In recent years, it has been established that laser-engineered surface structuring is a very efficient method to create a copper surface with a SEY maximum close to or even below unity. Different laser pulse durations, from nanoseconds to picoseconds, can be used to change surface morphology. Conversely, the characteristics that minimise the SEY, such as the moderately deep grooves and the redeposited nanoparticles, might have unfavourable consequences, including increased RF surface resistance. In this study, we describe the techniques used to measure the surface resistance of laser-treated copper samples using an enhanced dielectric resonator with 12 cm diameter sample sizes operating in the GHz range. The quantification basis lies in a non-contact measurement of the high-frequency losses, focusing on understanding the variation of surface resistance levels depending on the specifics of the treatment and possible post-treatment cleaning procedures.</p
RF Characterisation of Laser Treated Copper Surfaces for the Mitigation of Electron Cloud in Accelerators
In accelerator beam chambers and RF waveguides, electron cloud and multipacting can be mitigated effectively by reducing the secondary electron yield (SEY). In recent years, it has been established that laser-engineered surface structuring is a very efficient method to create a copper surface with a SEY maximum close to or even below unity. Different laser pulse durations, from nanoseconds to picoseconds, can be used to change surface morphology. Conversely, the characteristics that minimise the SEY, such as the moderately deep grooves and the redeposited nanoparticles, might have unfavourable consequences, including increased RF surface resistance. In this study, we describe the techniques used to measure the surface resistance of laser-treated copper samples using an enhanced dielectric resonator with 12 cm diameter sample sizes operating in the GHz range. The quantification basis lies in a non-contact measurement of the high-frequency losses, focusing on understanding the variation of surface resistance levels depending on the specifics of the treatment and possible post-treatment cleaning procedures.</p
Measurement and modelling of the residual stresses in autogenous and narrow gap laser welded AISI grade 316L stainless steel plates
Thick-section austenitic stainless steels have widespread industrial applications, where stress-corrosion cracking is often of major concern. Problems tend to arise in the vicinity of welds, where substantial residual stresses often reside. This paper describes an investigation into the residual stresses in autogenous high power laser welds and narrow gap laser welds (NGLW) in 10 mm thick AISI grade 316L steel plates, using both neutron diffraction and the contour method. The influences of laser power, welding speed and the time interval between weld passes on residual stress were analysed. For the NGLW process, finite element modelling was employed to understand the influence of thermal history on residual stress. The results for the NGLW technique show that the laser power has a significant effect on the peak value of residual stress, while the welding speed has a more significant influence on the width of the region sustaining tensile stresses
Structural plasticity of the selectivity filter in a nonselective ion channel
The sodium potassium ion channel (NaK) is a nonselective ion channel that conducts both sodium and potassium across the cellular membrane. A new crystallographic structure of NaK reveals conformational differences in the residues that make up the selectivity filter between the four subunits that form the ion channel and the inner helix of the ion channel. The crystallographic structure also identifies a side-entry, ion-conduction pathway for Na+ permeation that is unique to NaK. NMR studies and molecular dynamics simulations confirmed the dynamical nature of the top part of the selectivity filter and the inner helix in NaK as also observed in the crystal structure. Taken together, these results indicate that the structural plasticity of the selectivity filter combined with the dynamics of the inner helix of NaK are vital for the efficient conduction of different ions through the non-selective ion channel of NaK
Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber
A recently developed source of ultraviolet radiation, based on optical
soliton propagation in a gas-filled hollow-core photonic crystal fiber, is
applied here to angle-resolved photoemission spectroscopy (ARPES).
Near-infrared femtosecond pulses of only few {\mu}J energy generate vacuum
ultraviolet (VUV) radiation between 5.5 and 9 eV inside the gas-filled fiber.
These pulses are used to measure the band structure of the topological
insulator Bi2Se3 with a signal to noise ratio comparable to that obtained with
high order harmonics from a gas jet. The two-order-of-magnitude gain in
efficiency promises time-resolved ARPES measurements at repetition rates of
hundreds of kHz or even MHz, with photon energies that cover the first
Brillouin zone of most materials.Comment: 8 pages, 3 figure
- …