597 research outputs found
Missing sea level rise in southeastern Greenland during and since the Little Ice Age
The Greenland Ice Sheet has been losing mass at an accelerating rate over the past 2 decades. Understanding ice mass and glacier changes during the preceding several hundred years prior to geodetic measurements is more difficult because evidence of past ice extent in many places was later overridden. Salt marshes provide the only continuous records of relative sea level (RSL) from close to the Greenland Ice Sheet that span the period of time during and since the Little Ice Age (LIA) and can be used to reconstruct ice mass gain and loss over recent centuries. Salt marsh sediments collected at the mouth of Dronning Marie Dal, close to the Greenland Ice Sheet margin in southeastern Greenland, record RSL changes over the past ca. 300 years through changing sediment and diatom stratigraphy. These RSL changes record a combination of processes that are dominated by local and regional changes in Greenland Ice Sheet mass balance during this critical period that spans the maximum of the LIA and 20th-century warming. In the early part of the record (1725–1762 CE) the rate of RSL rise is higher than reconstructed from the closest isolation basin at Timmiarmiut, but between 1762 and 1880 CE the RSL rate is within the error range of the rate of RSL change recorded in the isolation basin. RSL begins to slowly fall around 1880 CE, with a total amount of RSL fall of 0.09±0.1 m in the last 140 years. Modelled RSL, which takes into account contributions from post-LIA Greenland Ice Sheet glacio-isostatic adjustment (GIA), ongoing deglacial GIA, the global non-ice sheet glacial melt fingerprint, contributions from thermosteric effects, the Antarctic mass loss sea level fingerprint and terrestrial water storage, overpredicts the amount of RSL fall since the end of the LIA by at least 0.5 m. The GIA signal caused by post-LIA Greenland Ice Sheet mass loss is by far the largest contributor to this modelled RSL, and error in its calculation has a large impact on RSL predictions at Dronning Marie Dal. We cannot reconcile the modelled RSL and the salt marsh observations, even when moving the termination of the LIA to 1700 CE and reducing the post-LIA Greenland mass loss signal by 30 %, and a “budget residual” of mm yr−1 since the end of the LIA remains unexplained. This new RSL record backs up other studies that suggest that there are significant regional differences in the timing and magnitude of the response of the Greenland Ice Sheet to the climate shift from the LIA into the 20th century
The clinical utility of FDG PET/CT among solid organ transplant recipients suspected of malignancy or infection
PURPOSE: Solid organ transplant (SOT) recipients are at high risk of developing infections and malignancies. (18)F-FDG PET/CT may enable timely detection of these diseases and help to ensure early intervention. We aimed to describe the clinical utility of FDG PET/CT in consecutive, diagnostic unresolved SOT recipients transplanted from January 2004 to May 2015. METHODS: Recipients with a post-transplant FDG PET/CT performed as part of diagnostic work-up were included. Detailed chart reviews were done to extract relevant clinical information and determine the final diagnosis related to the FDG PET/CT. Based on á priori defined criteria and the final diagnosis, results from each scan were classified as true or false, and diagnostic values determined. RESULTS: Among the 1,814 recipients in the cohort, 145 had an FDG PET/CT performed; 122 under the indication of diagnostically unresolved symptoms with a suspicion of malignancy or infection. The remaining (N = 23) had an FDG PET/CT to follow-up on a known disease or to stage a known malignancy. The 122 recipients underwent a total of 133 FDG PET/CT scans performed for a suspected malignancy (66 %) or an infection (34 %). Sensitivity, specificity, and positive and negative predictive values of the FDG PET/CT in diagnosing these conditions were 97, 84, 87, and 96 %, respectively. CONCLUSION: FDG PET/CT is an accurate diagnostic tool for the work-up of diagnostic unresolved SOT recipients suspected of malignancy or infection. The high sensitivity and NPV underlines the potential usefulness of PET/CT for excluding malignancy or focal infections in this often complex clinical situation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00259-016-3564-5) contains supplementary material, which is available to authorized users
Surface velocity of the Northeast Greenland Ice Stream (NEGIS): assessment of interior velocities derived from satellite data by GPS
The Northeast Greenland Ice Stream (NEGIS) extends around 600 km upstream from the coast to its onset near the ice divide in interior Greenland. Several maps of surface velocity and topography of interior Greenland exist, but their accuracy is not well constrained by in situ observations. Here we present the results from a GPS mapping of surface velocity in an area located approximately 150 km from the ice divide near the East Greenland Ice-core Project (EastGRIP) deep-drilling site. A GPS strain net consisting of 63 poles was established and observed over the years 2015–2019. The strain net covers an area of 35 km by 40 km, including both shear margins. The ice flows with a uniform surface speed of approximately 55 m a^−1 within a central flow band with longitudinal and transverse strain rates on the order of 10−4 a^−1 and increasing by an order of magnitude in the shear margins. We compare the GPS results to the Arctic Digital Elevation Model and a list of satellite-derived surface velocity products in order to evaluate these products. For each velocity product, we determine the bias in and precision of the velocity compared to the GPS observations, as well as the smoothing of the velocity products needed to obtain optimal precision. The best products have a bias and a precision of ∼0.5 m a^−1. We combine the GPS results with satellite-derived products and show that organized patterns in flow and topography emerge in NEGIS when the surface velocity exceeds approximately 55 m a−1 and are related to bedrock topography
Changes in Greenland’s peripheral glaciers linked to the North Atlantic Oscillation
Glaciers and ice caps peripheral to the main Greenland Ice Sheet contribute markedly to sea-level rise1,2,3. Their changes and variability, however, have been difficult to quantify on multi-decadal timescales due to an absence of long-term data4. Here, using historical aerial surveys, expedition photographs, spy satellite imagery and new remote-sensing products, we map glacier length fluctuations of approximately 350 peripheral glaciers and ice caps in East and West Greenland since 1890. Peripheral glaciers are found to have recently undergone a widespread and significant retreat at rates of 12.2 m per year and 16.6 m per year in East and West Greenland, respectively; these changes are exceeded in severity only by the early twentieth century post-Little-Ice-Age retreat. Regional changes in ice volume, as reflected by glacier length, are further shown to be related to changes in precipitation associated with the North Atlantic Oscillation (NAO), with a distinct east–west asymmetry; positive phases of the NAO increase accumulation, and thereby glacier growth, in the eastern periphery, whereas opposite effects are observed in the western periphery. Thus, with projected trends towards positive NAO in the future5,6, eastern peripheral glaciers may remain relatively stable, while western peripheral glaciers will continue to diminish
Modelled glacier dynamics over the last quarter of a century at Jakobshavn Isbræ
Observations over the past 2 decades show substantial ice loss associated
with the speed-up of marine-terminating glaciers in Greenland. Here we use a
regional three-dimensional outlet glacier model to simulate the behaviour of Jakobshavn
Isbræ (JI) located in western Greenland. Our approach is to model and
understand the recent behaviour of JI with a physical process-based model.
Using atmospheric forcing and an ocean parametrization we tune our model to
reproduce observed frontal changes of JI during 1990–2014. In our
simulations, most of the JI retreat during 1990–2014 is driven by the ocean
parametrization used and the glacier's subsequent response, which is largely
governed by bed geometry. In general, the study shows significant progress in
modelling the temporal variability of the flow at JI. Our results suggest
that the overall variability in modelled horizontal velocities is a response
to variations in terminus position. The model simulates two major
accelerations that are consistent with observations of changes in glacier
terminus. The first event occurred in 1998 and was triggered by a retreat of
the front and moderate thinning of JI prior to 1998. The second event, which
started in 2003 and peaked in the summer 2004, was triggered by the final
break-up of the floating tongue. This break-up reduced the buttressing at the
JI terminus that resulted in further thinning. As the terminus retreated over
a reverse bed slope into deeper water, sustained high velocities over the
last decade have been observed at JI. Our model provides evidence that the
1998 and 2003 flow accelerations are most likely initiated by the ocean
parametrization used but JI's subsequent dynamic response was governed by its
own bed geometry. We are unable to reproduce the observed 2010–2012 terminus
retreat in our simulations. We attribute this limitation to either
inaccuracies in basal topography or to misrepresentations of the climatic
forcings that were applied. Nevertheless, the model is able to simulate the
previously observed increase in mass loss through 2014
Seasonality of halogen deposition in polar snow and ice
Abstract. The atmospheric chemistry of iodine and bromine in Polar regions is of interest due to the key role of halogens in many atmospheric processes, particularly tropospheric ozone destruction. Bromine is emitted from the open ocean but is enriched above first-year sea ice during springtime bromine explosion events, whereas iodine emission is attributed to biological communities in the open ocean and hosted by sea ice. It has been previously demonstrated that bromine and iodine are present in Antarctic ice over glacial–interglacial cycles. Here we investigate seasonal variability of bromine and iodine in polar snow and ice, to evaluate their emission, transport and deposition in Antarctica and the Arctic and better understand potential links to sea ice. We find that bromine and iodine concentrations and Br enrichment (relative to sea salt content) in polar ice do vary seasonally in Arctic snow and Antarctic ice. Although seasonal variability in halogen emission sources is recorded by satellite-based observations of tropospheric halogen concentrations, seasonal patterns observed in snowpack are likely also influenced by photolysis-driven processes. Peaks of bromine concentration and Br enrichment in Arctic snow and Antarctic ice occur in spring and summer, when sunlight is present. A secondary bromine peak, observed at the end of summer, is attributed to bromine deposition at the end of the polar day. Iodine concentrations are largest in winter Antarctic ice strata, contrary to contemporary observations of summer maxima in iodine emissions. These findings support previous observations of iodine peaks in winter snow strata attributed to the absence of sunlight-driven photolytic re-mobilisation of iodine from surface snow. Further investigation is required to confirm these proposed mechanisms explaining observations of halogens in polar snow and ice, and to evaluate the extent to which halogens may be applied as sea ice proxies
- …