5,946 research outputs found

    Technical Note: Intercomparison of ILAS-II version 2 and 1.4 trace species with MIPAS-B measurements

    Get PDF
    The Improved Limb Atmospheric Spectrometer (ILAS)-II sensor aboard the Japanese ADEOS-II satellite was launched into its sun-synchronous orbit on 14 December 2002 and performed solar occultation measurements of trace species, aerosols, temperature, and pressure in the polar stratosphere until 25 October 2003. Vertical trace gas profiles obtained with the balloon version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) provide one of the sparse data sets for validating ILAS-II version 2 and 1.4 data. The MIPAS-B limb emission spectra were collected on 20 March 2003 over Kiruna (Sweden, 68° N) at virtually the same location that has been sounded by ILAS-II about 5.5 h prior to the sampling of MIPAS-B. The intercomparison of the new ILAS-II version 2 (Northern Hemispheric sunrise) data to MIPAS-B vertical trace gas profiles shows a good to excellent agreement within the combined error limits for the species O<sub>3</sub>, N<sub>2</sub>O, CH<sub>4</sub>, H<sub>2</sub>O (above 21 km), HNO<sub>3</sub>, ClONO<sub>2</sub>, and CFC-11 (CCl<sub>3</sub>F) in the compared altitude range between 16 and 31 km such that these data appear to be very useful for scientific analysis. With regard to the previous version 1.4 ILAS-II data, significant improvements in the consistency with MIPAS-B are obvious especially for the species CH<sub>4</sub> and H<sub>2</sub>O, but also for O<sub>3</sub>, HNO<sub>3</sub>, ClONO<sub>2</sub>, NO<sub>2</sub>, and N<sub>2</sub>O<sub>5</sub>. However, comparing gases like NO<sub>2</sub>, N<sub>2</sub>O<sub>5</sub>, and CFC-12 (CCl<sub>2</sub>F<sub>2</sub>) exhibits only poor agreement with MIPAS-B such that these species cannot be assumed to be validated at the present time

    Automated Classification of Airborne Laser Scanning Point Clouds

    Full text link
    Making sense of the physical world has always been at the core of mapping. Up until recently, this has always dependent on using the human eye. Using airborne lasers, it has become possible to quickly "see" more of the world in many more dimensions. The resulting enormous point clouds serve as data sources for applications far beyond the original mapping purposes ranging from flooding protection and forestry to threat mitigation. In order to process these large quantities of data, novel methods are required. In this contribution, we develop models to automatically classify ground cover and soil types. Using the logic of machine learning, we critically review the advantages of supervised and unsupervised methods. Focusing on decision trees, we improve accuracy by including beam vector components and using a genetic algorithm. We find that our approach delivers consistently high quality classifications, surpassing classical methods

    Strong Influence of Phonons on the Electron Dynamics of Bi2212

    Full text link
    The sudden change of the velocity, so-called "kink," of the dispersing peak in angle resolved photoelectron spectroscopy is a well-known feature in the high temperature superconducting cuprates. Currently, the origin of the kink is being much debated, but a consensus has not emerged yet. Here, we present a study of the momentum evolution of the kink structure from the nodal region towards the anti-nodal region, for optimally doped Bi2212 sample. We show that the observed temperature dependence of the kink structure in both regions of the momentum space is consistent with a scenario in which phonons contribute strongly to the kink

    Neutron Scattering and the B_{1g} Phonon in the Cuprates

    Full text link
    The momentum dependent lineshape of the out-of-phase oxygen vibration as measured in recent neutron scattering measurements is investigated. Starting from a microscopic coupling of the phonon vibration to a local crystal field, the phonon lineshift and broadening is calculated as a function of transfered momentum in the superconducting state of YBa2_{2}Cu3_{3}O7_{7}. It is shown that the anisotropy of the density of states, superconducting energy gap, and the electron-phonon coupling are all crucial in order to explain these experiments.Comment: new figures and discussio

    Optimal phase estimation in quantum networks

    Full text link
    We address the problem of estimating the phase phi given N copies of the phase rotation u(phi) within an array of quantum operations in finite dimensions. We first consider the special case where the array consists of an arbitrary input state followed by any arrangement of the N phase rotations, and ending with a POVM. We optimise the POVM for a given input state and fixed arrangement. Then we also optimise the input state for some specific cost functions. In all cases, the optimal POVM is equivalent to a quantum Fourier transform in an appropriate basis. Examples and applications are given.Comment: 9 pages, 2 figures; this is an extended version of arXiv:quant-ph/0609160. v2: minor corrections in reference

    A Cellular Potts Model simulating cell migration on and in matrix environments

    Get PDF
    Cell migration on and through extracellular matrix plays a critical role in a wide variety of physiological and pathological phenomena, and in scaffold-based tissue engineering. Migration is regulated by a number of extracellular matrix- or cell-derived biophysical parameters, such as matrix fiber orientation, gap size, and elasticity, or cell deformation, proteolysis, and adhesion. We here present an extended Cellular Potts Model (CPM) able to qualitatively and quantitatively describe cell migratory phenotype on both two-dimensional substrates and within three-dimensional environments, in a close comparison with experimental evidence. As distinct features of our approach, the cells are represented by compartmentalized discrete objects, differentiated in the nucleus and in the cytosolic region, while the extracellular matrix is composed of a fibrous mesh and of a homogeneous fluid. Our model provides a strong correlation of the directionality of migration with the topological ECM distribution and, further, a biphasic dependence of migration on the matrix density, and in part adhesion, in both two-dimensional and three-dimensional settings. Moreover, we demonstrate that the directional component of cell movement is strongly correlated with the topological distribution of the ECM fibrous network. In the three-dimensional networks, we also investigate the effects of the matrix mechanical microstructure, observing that, at a given distribution of fibers, cell motility has a subtle bimodal relation with the elasticity of the scaffold. Finally, cell locomotion requires deformation of the cell's nucleus and/or cell-derived proteolysis of steric fibrillar obstacles within rather rigid matrices characterized by small pores, not, however, for sufficiently large pores. In conclusion, we here propose a mathematical modeling approach that serves to characterize cell migration as a biological phenomen in health, disease and tissue engineering applications. The research that led to the present paper was partially supported by a grant of the group GNFM of INdA
    corecore