11,349 research outputs found

    Internal computational fluid mechanics on supercomputers for aerospace propulsion systems

    Get PDF
    The accurate calculation of three-dimensional internal flowfields for application towards aerospace propulsion systems requires computational resources available only on supercomputers. A survey is presented of three-dimensional calculations of hypersonic, transonic, and subsonic internal flowfields conducted at the Lewis Research Center. A steady state Parabolized Navier-Stokes (PNS) solution of flow in a Mach 5.0, mixed compression inlet, a Navier-Stokes solution of flow in the vicinity of a terminal shock, and a PNS solution of flow in a diffusing S-bend with vortex generators are presented and discussed. All of these calculations were performed on either the NAS Cray-2 or the Lewis Research Center Cray XMP

    Comparative study of turbulence models in predicting hypersonic inlet flows

    Get PDF
    A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared very well with the experimental data, and performed better than the Thomas model near the walls

    Inlets, ducts, and nozzles

    Get PDF
    The internal fluid mechanics research program in inlets, ducts, and nozzles consists of a balanced effort between the development of computational tools (both parabolized Navier-Stokes and full Navier-Stokes) and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: (1) highly 3-D flow fields; (2) shock-boundary-layer interactions; and (3) shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomenon. In particular, the highly 3-D flow field phenomenon is highlighted by describing the computational and experimental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary-layer interactions, the specific details of research for normal shock-boundary-layer interactions are described. For shear layer control, research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described

    Inlets, ducts and nozzles

    Get PDF
    The internal fluid mechanics research program in inlets, ducts, and nozzles is described. The program consists of a balanced effort between the development of computational tools and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: highly three-dimensional flow fields; shock-boundary layer interactions; and shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomena. In particular, the highly three-dimensional flow field phenomena is highlighted by describing the computational and experiemental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary layer interactions, the specific details of research for normal shock-boundary layer interactions are described. For shear layer control research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described. Future research in inlets, ducts, and nozzles will include more emphasis on three-dimensional full Navier-Stokes methods and corresponding experiments designed to concentrate on the appropriate three-dimensional fluid flow physics

    Classical Concepts in Quantum Programming

    Get PDF
    The rapid progress of computer technology has been accompanied by a corresponding evolution of software development, from hardwired components and binary machine code to high level programming languages, which allowed to master the increasing hardware complexity and fully exploit its potential. This paper investigates, how classical concepts like hardware abstraction, hierarchical programs, data types, memory management, flow of control and structured programming can be used in quantum computing. The experimental language QCL will be introduced as an example, how elements like irreversible functions, local variables and conditional branching, which have no direct quantum counterparts, can be implemented, and how non-classical features like the reversibility of unitary transformation or the non-observability of quantum states can be accounted for within the framework of a procedural programming language.Comment: 11 pages, 4 figures, software available from http://tph.tuwien.ac.at/~oemer/qcl.html, submitted for QS2002 proceeding

    Microscopic gauge-invariant theory of the c-axis infrared response of bilayer cuprate superconductors and the origin of the superconductivity induced absorption bands

    Get PDF
    We report on results of our theoretical study of the c-axis infrared conductivity of bilayer high-Tc cuprate superconductors using a microscopic model involving the bilayer-split (bonding and antibonding) bands. An emphasis is on the gauge-invariance of the theory, which turns out to be essential for the physical understanding of the electrodynamics of these compounds. The description of the optical response involves local (intra-bilayer and inter-bilayer) current densities and local conductivities. The local conductivities are obtained using a microscopic theory, where the quasiparticles of the two bands are coupled to spin fluctuations. The coupling leads to superconductivity and is described at the level of generalized Eliashberg theory. Also addressed is the simpler case of quasiparticles coupled by a separable and nonretarded interaction. The gauge invariance of the theory is achieved by including a suitable class of vertex corrections. The resulting response of the model is studied in detail and an interpretation of two superconductivity-induced peaks in the experimental data of the real part of the c-axis conductivity is proposed. The peak around 400/cm is attributed to a collective mode of the intra-bilayer regions, that is an analogue of the Bogolyubov-Anderson mode playing a crucial role in the theory of the longitudinal response of superconductors. For small values of the bilayer splitting, its nature is similar to that of the transverse plasmon of the phenomenological Josephson superlattice model. The peak around 1000/cm is interpreted as a pair breaking-feature that is related to the electronic coupling through the spacing layers separating the bilayers.Comment: 18 pages, 15 figures, submitted to Phys. Rev.

    Determinants of short-period heart rate variability in the general population

    Get PDF
    Decreased heart rate variability (HRV) is associated with a worse prognosis in a variety of diseases and disorders. We evaluated the determinants of short-period HRV in a random sample of 149 middle-aged men and 137 women from the general population. Spectral analysis was used to compute low-frequency (LF), high-frequency (HF) and total-frequency power. HRV showed a strong inverse association with age and heart rate in both sexes with a more pronounced effect of heart rate on HRV in women. Age and heart rate-adjusted LF was significantly higher in men and HF higher in women. Significant negative correlations of BMI, triglycerides, insulin and positive correlations of HDL cholesterol with LF and total power occurred only in men. In multivariate analyses, heart rate and age persisted as prominent independent predictors of HRV. In addition, BMI was strongly negatively associated with LF in men but not in women, We conclude that the more pronounced vagal influence in cardiac regulation in middle-aged women and the gender-different influence of heart rate and metabolic factors on HRV may help to explain the lower susceptibility of women for cardiac arrhythmias. Copyright (C) 2001 S. Karger AG, Basel

    Medical Information Representation Framework for Mobile Healthcare

    Get PDF
    In mobile healthcare, medical information are often expressed in different formats due to the local policies and regulations and the heterogeneity of the applications, systems, and the adopted Information and communication technology. This chapter describes a framework which enables medical information, in particular clinical vital signs and professional annotations, be processed, exchanged, stored and managed modularly and flexibly in a mobile, distributed and heterogeneous environment despite the diversity of the formats used to represent the information. To deal with medical information represented in multiple formats the authors adopt techniques and constructs similar to the ones used on the Internet, in particular, the authors are inspired by the constructs used in multi-media e-mail and audio-visual data streaming standards. They additionally make a distinction of the syntax for data transfer and store from the syntax for expressing medical domain concepts. In this way, they separate the concerns of what to process, exchange and store from how the information can be encoded or transcoded for transfer over the internet. The authors use an object oriented information model to express the domain concepts and their relations while briefly illustrate how framework tools can be used to encode vital sign data for exchange and store in a distributed and heterogeneous environment

    Superconductivity in a Ferromagnetic Layered Compound

    Get PDF
    We examine superconductivity in layered systems with large Fermi-surface splitting due to coexisting ferromagnetic layers. In particular, the hybrid ruthenate-cuprate compound RuSr_2GdCu_2O_8 is examined on the coexistence of the superconductivity and the ferromagnetism, which has been observed recently. We calculate critical fields of the superconductivity taking into account the Fulde-Ferrell-Larkin-Ovchinnikov state in a model with Fermi-surfaces which shapes are similar to those obtained by a band calculation. It is shown that the critical field is enhanced remarkably due to a Fermi-surface effect, and can be high enough to make the coexistence possible in a microscopic scale. We also clarify the direction of the spatial oscillation of the order parameter, which may be observed by scanning tunneling microscope experiments.Comment: 4 pages, 4 figures, (Latex, revtex.sty, epsf.sty

    A Morphological and Multicolor Survey for Faint QSOs in the Groth-Westphal Strip

    Get PDF
    Quasars representative of the populous faint end of the luminosity function are frustratingly dim with m~24 at intermediate redshift; moreover groundbased surveys for such faint QSOs suffer substantial morphological contamination by compact galaxies having similar colors. In order to establish a more reliable ultrafaint QSO sample, we used the APO 3.5-m telescope to take deep groundbased U-band CCD images in fields previously imaged in V,I with WFPC2/HST. Our approach hence combines multicolor photometry with the 0.1" spatial resolution of HST, to establish a morphological and multicolor survey for QSOs extending about 2 magnitudes fainter than most extant groundbased surveys. We present results for the "Groth-Westphal Strip", in which we identify 10 high likelihood UV-excess candidates having stellar or stellar-nucleus+galaxy morphology in WFPC2. For m(606)<24.0 (roughly B<24.5) the surface density of such QSO candidates is 420 (+180,-130) per square degree, or a surface density of 290 (+160,-110) per square degree with an additional V-I cut that may further exclude compact emission line galaxies. Even pending confirming spectroscopy, the observed surface density of QSO candidates is already low enough to yield interesting comparisons: our measures agree extremely well with the predictions of several recent luminosity function models.Comment: 29 pages including 6 tables and 7 figures. As accepted for publication in The Astronomical Journal (minor revisions
    • …
    corecore